Refining Coats’ disease by ultra-widefield imaging and optical coherence tomography angiography



The purpose of our study was to describe ultra-widefield (UWF) imaging and optical coherence tomography angiography (OCT-A) findings in affected and fellow eyes of patients with Coats’ disease.


Consecutive patients affected by Coats’ disease were prospectively recruited at the Department of Ophthalmology, San Raffaele Hospital, Milan, Italy in this cross-sectional, observational study. Patients underwent UWF color fundus photographs, UWF green autofluorescence, UWF fluorescein angiography (FA), optical coherence tomography (OCT), with 3 × 3 mm and 6 × 6 mm OCT-A scans of the macula. Images were qualitatively evaluated by two independent operators for the presence of pathology.


Eleven patients affected by Coats’ disease (eight males, mean age 17.1 ± 6.7 years). Nine and two patients had a clinical diagnosis of unilateral and bilateral disease, respectively. Five eyes had macular fibrosis. All clinically affected eyes exhibited retinal pathology at UWF imaging with the temporal sector most involved followed by the inferior, nasal, superior and macula. In all eyes with macular fibrosis, OCT-A revealed replacement of the foveal avascular zone with coarse vessels suggestive of vascularized fibrosis and flow void area in the choriocapillaris due to a masking effect; type 3 neovascularization was seen in 75% of cases. Seven out of nine clinically unaffected fellow eyes showed retinal pathology at UWF FA with the temporal quadrant most involved.


We demonstrated that Coats’ disease is a highly asymmetric bilateral disease and that UWF imaging is able to identify more retinal pathology than standard fundus imaging, thus guiding proper retinal photocoagulation. OCT-A allowed easy identification of type 3 neovascularization in a proportion of patients with macular fibrosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Shields JA, Shields CL (2002) Review: coats disease: the 2001 LuEsther T. Mertz lecture. Retina 22:80–91

    Article  PubMed  Google Scholar 

  2. 2.

    Shields JA, Shields CL, Honavar SG, Demirci H (2001) Clinical variations and complications of coats disease in 150 cases: the 2000 Sanford Gifford memorial lecture. Am J Ophthalmol 131:561–571

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Witmer MT, Kiss S (2013) Wide-field imaging of the retina. Surv Ophthalmol 58:143–154.

    Article  PubMed  Google Scholar 

  4. 4.

    Singer M, Sagong M, van Hemert J, Kuehlewein L, Bell D, Sadda SR (2016) Ultra-widefield imaging of the peripheral retinal vasculature in normal subjects. Ophthalmology 123:1053–1059.

    Article  PubMed  Google Scholar 

  5. 5.

    Kang KB, Wessel MM, Tong J, D'Amico DJ, Chan RV (2013) Ultra-widefield imaging for the management of pediatric retinal diseases. J Pediatr Ophthalmol Strabismus 50:282–288.

    Article  PubMed  Google Scholar 

  6. 6.

    Kumar V, Chandra P, Kumar A (2017) Ultra-wide field imaging in the diagnosis and management of adult-onset Coats' disease. Clin Exp Optom 100:79–82.

    Article  PubMed  Google Scholar 

  7. 7.

    Rabiolo A, Carnevali A, Bandello F, Querques G (2016) Optical coherence tomography angiography: evolution or revolution? Expert Rev Ophthalmol 11:243–245

    CAS  Article  Google Scholar 

  8. 8.

    Grosso A, Pellegrini M, Cereda MG, Panico C, Staurenghi G, Sigler EJ (2015) Pearls and pitfalls in diagnosis and management of coats disease. Retina 35:614–623.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Shields JA, Shields CL, Honavar SG, Demirci H, Cater J (2001) Classification and management of coats disease: the 2000 proctor lecture. Am J Ophthalmol 131:572–583

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Daruich AL, Moulin AL, Tran HV, Matet A, Munier FL (2016) SUBFOVEAL NODULE IN COATS' DISEASE: toward an updated classification predicting visual prognosis. Retina.

  11. 11.

    Blair MP, Ulrich JN, Elizabeth Hartnett M, Shapiro MJ (2013) Peripheral retinal nonperfusion in fellow eyes in coats disease. Retina 33:1694–1699.

    Article  PubMed  Google Scholar 

  12. 12.

    Kaneko Y, Moriyama M, Hirahara S, Ogura Y, Ohno-Matsui K (2014) Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography. Invest Ophthalmol Vis Sci 55:1432–1439.

    Article  PubMed  Google Scholar 

  13. 13.

    Tsui I, Bajwa A, Franco-Cardenas V, Pan CK, Kim HY, Schwartz SD (2013) Peripheral fluorescein angiographic findings in fellow eyes of patients with branch retinal vein occlusion. Int J Inflamm 2013:464127.

    Article  Google Scholar 

  14. 14.

    Oliver SC, Schwartz SD (2010) Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin Ophthalmol 25:27–33.

    Article  PubMed  Google Scholar 

  15. 15.

    Dodo Y, Murakami T, Unoki N, Ogino K, Uji A, Yoshitake S, Yoshimura N (2016) White dots as a novel marker of diabetic retinopathy severity in ultrawide field imaging. PLoS One 11:e0165906.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lu J, Mai G, Luo Y, Li M, Cao D, Wang X, Yan H, Sadda SR, Lu L (2017) Appearance of far peripheral retina in normal eyes by ultra-widefield fluorescein angiography. Am J Ophthalmol 173:84–90.

    Article  PubMed  Google Scholar 

  17. 17.

    Shah AR, Abbey AM, Yonekawa Y, Khandan S, Wolfe JD, Trese MT, Williams GA, Capone A Jr (2016) Widefield fluorescein angiography in patients without peripheral disease: a study of normal peripheral findings. Retina 36:1087–1092.

    Article  PubMed  Google Scholar 

  18. 18.

    Black GC, Perveen R, Bonshek R, Cahill M, Clayton-Smith J, Lloyd IC, McLeod D (1999) Coats' disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum Mol Genet 8:2031–2035

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Gilmour DF (2015) Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond) 29:1–14.

    CAS  Article  Google Scholar 

  20. 20.

    Holmstrom G, Thoren K (2000) Ocular manifestations of incontinentia pigmenti. Acta Ophthalmol Scand 78:348–353

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Yonekawa Y, Todorich B, Trese MT (2016) Optical coherence tomography angiography findings in Coats' disease. Ophthalmology 123:1964.

    Article  PubMed  Google Scholar 

  22. 22.

    Hautz W, Golebiewska J, Kocyla-Karczmarewicz B (2017) Optical coherence tomography and optical coherence tomography angiography in monitoring Coats' disease. J Ophthalmol 2017:7849243.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Muakkassa NW, de Carlo TE, Choudhry N, Duker JS, Baumal CR (2016) Optical coherence tomography angiography findings in Coats' disease. Ophthalmic Surg Lasers Imaging Retina 47:632–635.

    Article  PubMed  Google Scholar 

  24. 24.

    Cicinelli MV, Carnevali A, Rabiolo A, Querques L, Zucchiatti I, Scorcia V, Bandello F, Querques G (2017) Clinical spectrum of macular-foveal capillaries evaluated with optical coherence tomography angiography. Retina 37:436–443.

    Article  PubMed  Google Scholar 

  25. 25.

    Yeung J, Crock G, Cairns J, Heinze J, Troski S, Billson F (1973) Macular-foveal capillaries in human retina. Aust J Ophthalmol 1:17–23

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Jumper JM, Pomerleau D, McDonald HR, Johnson RN, Fu AD, Cunningham ET Jr (2010) Macular fibrosis in coats disease. Retina 30:S9–14

    Article  PubMed  Google Scholar 

  27. 27.

    Sigler EJ, Calzada JI (2015) Retinal angiomatous proliferation with chorioretinal anastomosis in childhood coats disease: a reappraisal of macular fibrosis using multimodal imaging. Retina 35:537–546.

    Article  PubMed  Google Scholar 

  28. 28.

    Sigler EJ, Randolph JC, Calzada JI, Wilson MW, Haik BG (2014) Current management of coats disease. Surv Ophthalmol 59:30–46.

    Article  PubMed  Google Scholar 

Download references


Prof Giuseppe Querques and Prof Francesco Bandello have contributed equally to this study and should be considered as equivalent authors.



Author information



Corresponding author

Correspondence to Giuseppe Querques.

Ethics declarations

Conflict of interest

Alessandro Rabiolo, Alessandro Marchese, Riccardo Sacconi, Maria Vittoria Cicinelli, Andrea Grosso and Lea Querques have no disclosures. Giuseppe Querques is a consultant for: Alimera Sciences (Alpharetta, GA, USA), Allergan Inc. (Irvine, CA, USA), Bayer Schering-Pharma (Berlin, Germany), Heidelberg (Germany), Novartis (Basel, Switzerland), Sandoz (Berlin, Germany), Zeiss (Dublin, CA, USA). Francesco Bandello has the following disclosures: ALLERGAN (S), ALIMERA (S), BAYER (S), FARMILA-THEA (S), SCHERING PHARMA (S), SANOFI-AVENTIS (S), NOVAGALI (S), PHARMA (S), HOFFMANN-LA ROCHE (S), GENENTECH (S), and NOVARTIS (S).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabiolo, A., Marchese, A., Sacconi, R. et al. Refining Coats’ disease by ultra-widefield imaging and optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 255, 1881–1890 (2017).

Download citation


  • Coats’ disease
  • Macular fibrosis
  • Ultra-widefield imaging
  • Ultra-widefield fluorescein angiography
  • Optical coherence tomography angiography
  • Optical coherence tomography