Skip to main content

Advertisement

Log in

Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of our study was to investigate characteristics of retinal vessels in eyes with surgically closed macular holes (MH).

Methods

We included patients who underwent surgery for idiopathic MH and a follow-up examination using optical coherence tomography angiography (OCTA). The area of the foveal avascular zone (FAZ) and retinal vascular densities of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were calculated on the postoperative OCTA images and compared with those of age-matched normal controls.

Results

Twenty-eight patients with MH and 28 controls were included. Mean postoperative FAZ areas of SCP and DCP (0.317 ± 0.129 mm2 and 0.500 ± 0.174 mm2) were smaller than those of normal controls (0.406 ± 0.131 mm2 and 0.687 ± 0.147 mm2) (P = 0.013 and P < 0.001, respectively). Retinal vascular densities of SCP and DCP in the MH group (32.23 ± 1.45% and 31.85 ± 1.28%) were lower than those of the control group (33.26 ± 1.71% and 33.18 ± 1.89%) (P = 0.019 and P = 0.003, respectively). The retinal vascular densities of SCP and DCP were associated with postoperative mean ganglion cell–inner plexiform layer (GC-IPL) thickness (P = 0.033 and P = 0.035, respectively). The vascular densities were horizontally asymmetric and related to asymmetric distribution of GC-IPL thickness in the MH group.

Conclusions

Surgically closed MH eyes had remodeled retinal vascular patterns, which were related to morphologic changes in the inner retinal layer. The healing process after MH surgery may be involved in asymmetric change in anatomy and hemodynamics of the inner retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109:654–659

    Article  CAS  PubMed  Google Scholar 

  2. Wendel RT, Patel AC, Kelly NE, Salzano TC, Wells JW, Novack GD (1993) Vitreous surgery for macular holes. Ophthalmology 100:1671–1676

    Article  CAS  PubMed  Google Scholar 

  3. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The international Vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. doi:10.1016/j.ophtha.2013.07.042

    Article  PubMed  Google Scholar 

  4. Kusuhara S, Teraoka Escano MF, Fujii S, Nakanishi Y, Tamura Y, Nagai A, Yamamoto H, Tsukahara Y, Negi A (2004) Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol 138:709–716. doi:10.1016/j.ajo.2004.04.063

    Article  PubMed  Google Scholar 

  5. Matet A, Savastano MC, Rispoli M, Bergin C, Moulin A, Crisanti P, Behar-Cohen F, Lumbroso B (2015) En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Muller cells. Am J Ophthalmol 159(1142–1151):e1143. doi:10.1016/j.ajo.2015.02.013

    Google Scholar 

  6. Tanner V, Chauhan DS, Jackson TL, Williamson TH (2001) Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 85:1092–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woon WH, Greig D, Savage MD, Wilson MC, Grant CA, Mokete B, Bishop F (2015) Movement of the inner retina complex during the development of primary full-thickness macular holes: implications for hypotheses of pathogenesis. Graefes Arch Clin Exp Ophthalmol 253:2103–2109. doi:10.1007/s00417-015-2951-0

    Article  PubMed  Google Scholar 

  8. Yun C, Oh J, Hwang SY, Togloom A, Kim SW, Huh K (2012) Morphologic characteristics of chronic macular hole on optical coherence tomography. Retina 32:2077–2084. doi:10.1097/IAE.0b013e31825620ba

    Article  PubMed  Google Scholar 

  9. Michalewska Z, Michalewski J, Nawrocki J (2010) Continuous changes in macular morphology after macular hole closure visualized with spectral optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 248:1249–1255. doi:10.1007/s00417-010-1370-5

    Article  PubMed  Google Scholar 

  10. Balducci N, Morara M, Veronese C, Torrazza C, Pichi F, Ciardella AP (2014) Retinal nerve fiber layer thickness modification after internal limiting membrane peeling. Retina 34:655–663. doi:10.1097/IAE.0000000000000004

    Article  PubMed  Google Scholar 

  11. Ishida M, Ichikawa Y, Higashida R, Tsutsumi Y, Ishikawa A, Imamura Y (2014) Retinal displacement toward optic disc after internal limiting membrane peeling for idiopathic macular hole. Am J Ophthalmol 157:971–977. doi:10.1016/j.ajo.2014.01.026

    Article  PubMed  Google Scholar 

  12. Itoh Y, Inoue M, Rii T, Hiraoka T, Hirakata A (2012) Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. Ophthalmology 119:1438–1446. doi:10.1016/j.ophtha.2012.01.023

    Article  PubMed  Google Scholar 

  13. Kawano K, Ito Y, Kondo M, Ishikawa K, Kachi S, Ueno S, Iguchi Y, Terasaki H (2013) Displacement of foveal area toward optic disc after macular hole surgery with internal limiting membrane peeling. Eye (Lond) 27:871–877. doi:10.1038/eye.2013.99

    Article  CAS  Google Scholar 

  14. Kim JH, Kang SW, Park DY, Kim SJ, Ha HS (2012) Asymmetric elongation of foveal tissue after macular hole surgery and its impact on metamorphopsia. Ophthalmology 119:2133–2140. doi:10.1016/j.ophtha.2012.05.018

    Article  PubMed  Google Scholar 

  15. Kumagai K, Hangai M, Larson E, Ogino N (2013) Progressive changes of regional macular thickness after macular hole surgery with internal limiting membrane peeling. Invest Ophthalmol Vis Sci 54:4491–4497. doi:10.1167/iovs.13-11662

    Article  PubMed  Google Scholar 

  16. Nukada K, Hangai M, Ooto S, Yoshikawa M, Yoshimura N (2013) Tomographic features of macula after successful macular hole surgery. Invest Ophthalmol Vis Sci 54:2417–2428. doi:10.1167/iovs.12-10838

    Article  PubMed  Google Scholar 

  17. Oh IK, Oh J, Yang SM, Ahn SE, Kim SW, Huh K (2012) Hyperreflective external limiting membranes after successful macular hole surgery. Retina 32:760–766. doi:10.1097/IAE.0b013e318227aa33

    Article  PubMed  Google Scholar 

  18. Oh J, Smiddy WE, Flynn HW Jr, Gregori G, Lujan B (2010) Photoreceptor inner/outer segment defect imaging by spectral domain OCT and visual prognosis after macular hole surgery. Invest Ophthalmol Vis Sci 51:1651–1658. doi:10.1167/iovs.09-4420

    Article  PubMed  Google Scholar 

  19. Oh J, Yang SM, Choi YM, Kim SW, Huh K (2013) Glial proliferation after vitrectomy for a macular hole: a spectral domain optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 251:477–484. doi:10.1007/s00417-012-2058-9

    Article  PubMed  Google Scholar 

  20. Ohta K, Sato A, Fukui E (2013) Retinal thickness in eyes with idiopathic macular hole after vitrectomy with internal limiting membrane peeling. Graefes Arch Clin Exp Ophthalmol 251:1273–1279. doi:10.1007/s00417-012-2173-7

    Article  PubMed  Google Scholar 

  21. Ooka E, Mitamura Y, Baba T, Kitahashi M, Oshitari T, Yamamoto S (2011) Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol 152(283–290):e281. doi:10.1016/j.ajo.2011.02.001

    Google Scholar 

  22. Wakabayashi T, Fujiwara M, Sakaguchi H, Kusaka S, Oshima Y (2010) Foveal microstructure and visual acuity in surgically closed macular holes: spectral-domain optical coherence tomographic analysis. Ophthalmology 117:1815–1824. doi:10.1016/j.ophtha.2010.01.017

    Article  PubMed  Google Scholar 

  23. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA ophthalmol 133:45–50. doi:10.1001/jamaophthalmol.2014.3616

    Article  PubMed  Google Scholar 

  24. Rizzo S, Savastano A, Bacherini D, Savastano MC (2017) Vascular features of full-thickness macular hole by OCT angiography. Ophthalmic Surg Lasers Imaging Retina 48:62–68. doi:10.3928/23258160-20161219-09

    Article  PubMed  Google Scholar 

  25. Teng Y, Yu M, Wang Y, Liu X, You Q, Liu W (2017) OCT angiography quantifying choriocapillary circulation in idiopathic macular hole before and after surgery. Graefes Arch Clin Exp Ophthalmol. doi:10.1007/s00417-017-3586-0

  26. Michalewska Z, Michalewski J, Cisiecki S, Adelman R, Nawrocki J (2008) Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 246:823–830. doi:10.1007/s00417-007-0764-5

    Article  PubMed  Google Scholar 

  27. Theodossiadis PG, Grigoropoulos VG, Theodossiadis GP (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: a study by spectral domain optical coherence tomography. Ophthalmologica 225:176–184. doi:10.1159/000323322

    Article  PubMed  Google Scholar 

  28. Matsunaga D, Yi J, Puliafito CA, Kashani AH (2014) OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina 45:510–515. doi:10.3928/23258160-20141118-04

    Article  PubMed  Google Scholar 

  29. Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, Wang L, Lu F, Shen M (2016) Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci 57:6020–6030. doi:10.1167/iovs.16-19542

    Article  PubMed  Google Scholar 

  30. Smiddy WE, Flynn HW Jr (2004) Pathogenesis of macular holes and therapeutic implications. Am J Ophthalmol 137:525–537. doi:10.1016/j.ajo.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  31. Baba T, Sato E, Oshitari T, Yamamoto S (2014) Regional reduction of ganglion cell complex after vitrectomy with internal limiting membrane peeling for idiopathic macular hole. J Ophthalmol 2014:372589. doi:10.1155/2014/372589

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baba T, Yamamoto S, Kimoto R, Oshitari T, Sato E (2012) Reduction of thickness of ganglion cell complex after internal limiting membrane peeling during vitrectomy for idiopathic macular hole. Eye (Lond) 26:1173–1180. doi:10.1038/eye.2012.170

    Article  CAS  Google Scholar 

  33. Chin EK, Almeida DR, Sohn EH (2014) Structural and functional changes after macular hole surgery: a review. Int Ophthalmol Clin 54:17–27. doi:10.1097/iio.0000000000000011

    Article  PubMed  Google Scholar 

  34. Haritoglou C, Gass CA, Schaumberger M, Ehrt O, Gandorfer A, Kampik A (2001) Macular changes after peeling of the internal limiting membrane in macular hole surgery. Am J Ophthalmol 132:363–368

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto Y, Saito W, Fujiya A, Yoshizawa C, Hirooka K, Mori S, Noda K, Ishida S (2015) Changes in inner and outer retinal layer thicknesses after vitrectomy for idiopathic macular hole: implications for visual prognosis. PLoS One 10:e0135925. doi:10.1371/journal.pone.0135925

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kumagai K, Ogino N, Furukawa M, Hangai M, Kazama S, Nishigaki S, Larson E (2012) Retinal thickness after vitrectomy and internal limiting membrane peeling for macular hole and epiretinal membrane. Clin Ophthalmol 6:679–688. doi:10.2147/OPTH.S30288

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nakagomi T, Goto T, Tateno Y, Oshiro T, Iijima H (2013) Macular slippage after macular hole surgery with internal limiting membrane peeling. Curr Eye Res 38:1255–1260. doi:10.3109/02713683.2013.811261

    Article  PubMed  Google Scholar 

  38. Seo KH, Yu SY, Kwak HW (2015) Topographic changes in macular ganglion cell-inner plexiform layer thickness after vitrectomy with Indocyanine green-guided internal limiting membrane peeling for idiopathic macular hole. Retina 35:1828–1835. doi:10.1097/IAE.0000000000000563

    Article  PubMed  Google Scholar 

  39. Treumer F, Wacker N, Junge O, Hedderich J, Roider J, Hillenkamp J (2011) Foveal structure and thickness of retinal layers long-term after surgical peeling of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci 52:744–750. doi:10.1167/iovs.10-6310

    Article  PubMed  Google Scholar 

  40. Pichi F, Lembo A, Morara M, Veronese C, Alkabes M, Nucci P, Ciardella AP (2014) Early and late inner retinal changes after inner limiting membrane peeling. Int Ophthalmol 34:437–446. doi:10.1007/s10792-013-9831-6

    Article  PubMed  Google Scholar 

  41. Aso H, Iijima H, Imai M, Gotoh T (2009) Temporal changes in retinal thickness after removal of the epiretinal membrane. Acta Ophthalmol 87:419–423. doi:10.1111/j.1755-3768.2008.01264.x

    Article  PubMed  Google Scholar 

  42. Baba T, Kakisu M, Nizawa T, Oshitari T, Yamamoto S (2017) Superficial foveal avascular zone determined by optical coherence tomography angiography before and after macular hole surgery. Retina 37:444–450. doi:10.1097/IAE.0000000000001205

    Article  PubMed  Google Scholar 

  43. Rahimy E, McCannel CA (2016) Impact of internal limiting membrane peeling on macular hole reopening: a systematic review and meta-analysis. Retina 36:679–687. doi:10.1097/iae.0000000000000782

    Article  PubMed  Google Scholar 

  44. Schumann RG, Schaumberger MM, Rohleder M, Haritoglou C, Kampik A, Gandorfer A (2006) Ultrastructure of the vitreomacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases. Am J Ophthalmol 141:1112–1119. doi:10.1016/j.ajo.2006.01.074

    Article  PubMed  Google Scholar 

  45. Spiteri Cornish K, Lois N, Scott NW, Burr J, Cook J, Boachie C, Tadayoni R, la Cour M, Christensen U, Kwok AK (2014) Vitrectomy with internal limiting membrane peeling versus no peeling for idiopathic full-thickness macular hole. Ophthalmology 121:649–655. doi:10.1016/j.ophtha.2013.10.020

    Article  PubMed  Google Scholar 

  46. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. doi:10.1016/j.preteyeres.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  47. Sano M, Shimoda Y, Hashimoto H, Kishi S (2009) Restored photoreceptor outer segment and visual recovery after macular hole closure. Am J Ophthalmol 147(313–318):e311. doi:10.1016/j.ajo.2008.08.002

    Google Scholar 

  48. Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT211–OCT223. doi:10.1167/iovs.15-18793

    Article  PubMed  Google Scholar 

  49. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:5780–5787. doi:10.1167/iovs.16-20045

    Article  CAS  PubMed  Google Scholar 

  50. Chhablani J, Kumar K, Ali TR, Narayanan R (2014) Spectral-domain optical coherence tomography features in fellow eyes of patients with idiopathic macular hole. Eur J Ophthalmol 24:382–386. doi:10.5301/ejo.5000386

    Article  PubMed  Google Scholar 

  51. Niwa H, Terasaki H, Ito Y, Miyake Y (2005) Macular hole development in fellow eyes of patients with unilateral macular hole. Am J Ophthalmol 140:370–375. doi:10.1016/j.ajo.2005.03.070

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeryung Oh.

Ethics declarations

Funding

This manuscript is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under the Industrial Technology Innovation (10063364).

Conflict of interest

J. O. is a consultant of Topcon Corporation. Other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Electronic supplementary material

ESM 1

(PDF 88 kb)

ESM 2

(PDF 162 kb)

ESM 3

(PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, C., Ahn, J., Kim, M. et al. Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 255, 1923–1934 (2017). https://doi.org/10.1007/s00417-017-3742-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3742-6

Keywords

Navigation