Skip to main content

Advertisement

Log in

Mapping diurnal changes in choroidal, Haller’s and Sattler’s layer thickness using 3-dimensional 1060-nm optical coherence tomography

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To test the significance of diurnal changes in choroidal, Haller’s and Sattler’s layer thickness in healthy subjects using spatial analysis of three-dimensional (3D) 1060-nm optical coherence tomography (OCT) scans.

Methods

Automatically generated choroidal, Haller’s and Sattler’s layer thickness maps were statistically analyzed for 19 healthy subjects at two time points (8 a.m. and 6 p.m.) that represent the currently proposed ChT peak and nadir. All subjects were imaged by high-speed 1060-nm OCT over a 36° × 36° field of view. Spatial distribution of layer thickness was analyzed using the Early Treatment Diabetic Retinopathy Study (ETDRS) grid.

Results

The choroid was significantly thicker at 8 a.m. than at 6 p.m. (p < 0,0125, paired t-test, Bonferroni correction). Diurnal variation of mean choroidal thickness (ChT) for all ETDRS subfields was 12 μm. Haller’s layer thickness showed no significant diurnal variation (P > 0.0125), but Sattler’s layer was thicker in the morning than in late afternoon (P < 0.0125).

Conclusions

Our measurements indicate that diurnal ChT variation may exist, but is less relevant than previously proposed by studies using single location imaging. Sattler’s layer shows diurnal variation in line with ChT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. Opt Express 13(9):3252–3258

    Article  PubMed  Google Scholar 

  2. Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina (Philadelphia, Pa) 29(10):1469–1473. doi:10.1097/IAE.0b013e3181be0a83

    Article  Google Scholar 

  3. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117(9):1792–1799. doi:10.1016/j.ophtha.2010.01.023

    Article  PubMed  Google Scholar 

  4. Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845. doi:10.1016/j.ophtha.2010.09.012

    Article  PubMed  Google Scholar 

  5. Esmaeelpour M, Brunner S, Ansari-Shahrezaei S, Nemetz S, Povazay B, Kajic V, Drexler W, Binder S (2012) Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci 53(11):6803–6809. doi:10.1167/iovs.12-10314

    Article  PubMed  Google Scholar 

  6. Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Hale SL, North RV, Drexler W, Sheen NJ (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52(8):5311–5316. doi:10.1167/iovs.10-6875

    Article  PubMed  Google Scholar 

  7. Agawa T, Miura M, Ikuno Y, Makita S, Fabritius T, Iwasaki T, Goto H, Nishida K, Yasuno Y (2011) Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 249(10):1485–1492. doi:10.1007/s00417-011-1708-7

    Article  PubMed  Google Scholar 

  8. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51(4):2173–2176. doi:10.1167/iovs.09-4383

    Article  PubMed  Google Scholar 

  9. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815. doi:10.1016/j.ajo.2008.12.008

    Article  PubMed  Google Scholar 

  10. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500. doi:10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  11. Ouyang Y, Heussen FM, Mokwa N, Walsh AC, Durbin MK, Keane PA, Sanchez PJ, Ruiz-Garcia H, Sadda SR (2011) Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52(9):7019–7026. doi:10.1167/iovs.11-8046

    Article  PubMed  PubMed Central  Google Scholar 

  12. Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W (2010) Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51(10):5260–5266. doi:10.1167/iovs.10-5196

    Article  PubMed  Google Scholar 

  13. Barteselli G, Chhablani J, El-Emam S, Wang H, Chuang J, Kozak I, Cheng L, Bartsch DU, Freeman WR (2012) Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119(12):2572–2578. doi:10.1016/j.ophtha.2012.06.065

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tan CS, Ouyang Y, Ruiz H, Sadda SR (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(1):261–266. doi:10.1167/iovs.11-8782

    Article  PubMed  Google Scholar 

  15. Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K, Iida T (2012) Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci 53(4):2300–2307. doi:10.1167/iovs.11-8383

    Article  PubMed  Google Scholar 

  16. Povazay B, Hermann B, Hofer B, Kajic V, Simpson E, Bridgford T, Drexler W (2009) Wide-field optical coherence tomography of the choroid in vivo. Invest Ophthalmol Vis Sci 50(4):1856–1863. doi:10.1167/iovs.08-2869

    Article  PubMed  Google Scholar 

  17. Kajic V, Esmaeelpour M, Povazay B, Marshall D, Rosin PL, Drexler W (2012) Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomedical optics express 3(1):86–103. doi:10.1364/boe.3.000086

    Article  PubMed  Google Scholar 

  18. Kajic V, Povazay B, Hermann B, Hofer B, Marshall D, Rosin PL, Drexler W (2010) Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Opt Express 18(14):14730–14744. doi:10.1364/oe.18.014730

    Article  CAS  PubMed  Google Scholar 

  19. Balaskas K, Ballabeni P, Guex-Crosier Y (2012) Retinal thickening in HLA-B27-associated acute anterior uveitis: evolution with time and association with severity of inflammatory activity. Invest Ophthalmol Vis Sci 53(10):6171–6177. doi:10.1167/iovs.12-10026

    Article  PubMed  Google Scholar 

  20. Bland JM, Altman DG (1996) Measurement error. BMJ (Clinical research ed) 313(7059):744

    Article  CAS  Google Scholar 

  21. Esmaeelpour M, Kajic V, Zabihian B, Othara R, Ansari-Shahrezaei S, Kellner L, Krebs I, Nemetz S, Kraus MF, Hornegger J, Fujimoto JG, Drexler W, Binder S (2014) Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS One 9(6):e99690. doi:10.1371/journal.pone.0099690

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kajic V, Esmaeelpour M, Glittenberg C, Kraus MF, Honegger J, Othara R, Binder S, Fujimoto JG, Drexler W (2013) Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomedical optics express 4(1):134–150. doi:10.1364/boe.4.000134

    Article  PubMed  Google Scholar 

  23. Wilson LB, Quinn GE, Ying GS, Francis EL, Schmid G, Lam A, Orlow J, Stone RA (2006) The relation of axial length and intraocular pressure fluctuations in human eyes. Invest Ophthalmol Vis Sci 47(5):1778–1784. doi:10.1167/iovs.05-0869

    Article  PubMed  Google Scholar 

  24. Mapstone R, Clark CV (1985) Diurnal variation in the dimensions of the anterior chamber. Arch Ophthalmol 103(10):1485–1486

    Article  CAS  PubMed  Google Scholar 

  25. Hayreh SS (1990) In vivo choroidal circulation and its watershed zones. Eye (London, England) 4(Pt 2):273–289. doi:10.1038/eye.1990.39

    Article  Google Scholar 

  26. Lauber JK, Shutze JV, Mcginnis J (1961) Effects of exposure to continuous light on the eye of the growing chick. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 106:871–872

  27. Li SM, Li H, Li SY, Liu LR, Kang MT, Wang YP, Zhang F, Zhan SY, Gopinath B, Mitchell P, Wang N (2015) Time outdoors and myopia progression over 2 years in Chinese children: the Anyang childhood eye study. Invest Ophthalmol Vis Sci 56(8):4734–4740. doi:10.1167/iovs.14-15474

    Article  PubMed  Google Scholar 

  28. Vuong VS, Moisseiev E, Cunefare D, Farsiu S, Moshiri A, Yiu G (2016) Repeatability of choroidal thickness measurements on enhanced depth imaging optical coherence tomography using different posterior boundaries. Am J Ophthalmol 169:104–112. doi:10.1016/j.ajo.2016.06.023

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Gabriel.

Ethics declarations

Funding

Jubilaeumsfond (Oesterreichische Nationalbank, project grant number 14294) and Bayer Grant Support (Bayer AG, Leverkusen, Germany) provided financial support in the form of monetary funding.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, M., Esmaeelpour, M., Shams-Mafi, F. et al. Mapping diurnal changes in choroidal, Haller’s and Sattler’s layer thickness using 3-dimensional 1060-nm optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 255, 1957–1963 (2017). https://doi.org/10.1007/s00417-017-3723-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3723-9

Keywords

Navigation