Skip to main content

Advertisement

Log in

Optical coherence tomography angiography in pre-perimetric open-angle glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic efficacy of optical coherence tomography (OCT) angiography, in patients with pre-perimetric open-angle glaucoma.

Methods

Thirty-eight consecutive eyes of 26 patients with pre-perimetric open-angle glaucoma and 48 normal eyes of 32 controls were included in this prospective study. We evaluated OCT angiography, spectral-domain OCT and visual fields parameters. Differences between controls and patients and between OCT angiography parameters and traditional glaucoma measurements were evaluated. Receiver operating characteristic curves for OCT angiography parameters were assessed.

Results

The flow index (p = 0.021) and vessel density (p = 0.001) were significantly lower in pre-perimetric glaucoma eyes versus normal eyes. Ganglion cell complex parameters were significantly correlated to OCT angiography parameters (p < 0.05). Neither retinal nerve fiber layer (RNFL) nor visual field parameters correlated with OCT angiography parameters.

Conclusions

OCT angiography can be considered a reliable, easy-to-perform method with which to evaluate microvascular changes of optic nerve head for the early diagnosis and follow-up of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Congdon NG, Friedman DS, Lietman T (2003) Important causes of visual impairment in the world today. JAMA Ophthalmol 290(15):2057–2060

    CAS  Google Scholar 

  3. Gillespie BW, Musch DC, Guire KE, Mills RP, Lichter PR, Janz NK, Wren PA, CIGTS (Collaborative Initial Glaucoma Treatment Study) Study Group (2003) The Collaborative Initial Glaucoma Treatment Study: baseline visual field and test–retest variability. Invest Ophthalmol Vis Sci 44(6):2613–2620

    Article  PubMed  Google Scholar 

  4. Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, Shi G, Sun X (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 253(9):1557–1564

    Article  PubMed  Google Scholar 

  5. Emre M, Orgül S, Gugleta K, Flammer J (2004) Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol 88(5):662–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chung HS, Harris A, Kagemann L, Martin B (1999) Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 83(4):466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow—relevance for glaucoma. Exp Eye Res 93(2):141–155

    Article  CAS  PubMed  Google Scholar 

  8. Cennamo G, Finelli M, Iaccarino G, de Crecchio G, Cennamo G (2012) Choroidal thickness in open-angle glaucoma measured by spectral-domain scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 228(1):47–52

    Article  PubMed  Google Scholar 

  9. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D (2015) Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133(9):1045–1052

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116(12):2305–2314

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirashima T, Hangai M, Nukada M, Nakano N, Morooka S, Akagi T, Nonaka A, Yoshimura N (2013) Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol 251(1):129–137

    Article  PubMed  Google Scholar 

  13. Anderson DR, Patella VM (1999) Automated static perimetry, 2nd edn. Mosby, St. Louis, pp 10–35

    Google Scholar 

  14. Chhablani J, Rao HB, Begum VU, Jonnadulla GB, Goud A, Barteselli G (2015) Retinal ganglion cells thinning in eyes with non-proliferative idiopathic macular telangiectasia type 2A. Invest Ophthalmol Vis Sci 56(2):1416–1422

    Article  PubMed  Google Scholar 

  15. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12

    Article  PubMed  Google Scholar 

  17. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):451–459

    Article  Google Scholar 

  18. Lévêque PM, Zéboulon P, Brasnu E, Baudouin C, Labbé A (2016) Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol 2016:6956717

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D (2013) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3(12):3127–3137

    Article  Google Scholar 

  20. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefánsson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393

    Article  PubMed  Google Scholar 

  21. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A (2000) Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt study. Ophthalmology 107(7):1287–1293

    Article  CAS  PubMed  Google Scholar 

  22. Petrig BL, Riva CE, Hayreh SS (1999) Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol 127(4):413–425

    Article  CAS  PubMed  Google Scholar 

  23. Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B (2008) Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 43(3):328–336

    Article  PubMed  Google Scholar 

  24. Resch H, Garhofer G, Fuchsjäger-Mayrl G, Hommer A, Schmetterer L (2009) Endothelial dysfunction in glaucoma. Acta Ophthalmol 87(1):4–12

    Article  PubMed  Google Scholar 

  25. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73

    Article  PubMed  Google Scholar 

  26. Cennamo G, Montorio D, Romano MR, Cardone DM, Minervino C, Reibaldi M, Cennamo G (2016) Structure–functional parameters in differentiating between patients with different degrees of glaucoma. J Glaucoma 25(10):884–888

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilda Cennamo.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationship, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cennamo, G., Montorio, D., Velotti, N. et al. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 255, 1787–1793 (2017). https://doi.org/10.1007/s00417-017-3709-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3709-7

Keywords

Navigation