Cell viability and shock wave amplitudes in the endothelium of porcine cornea exposed to ultrashort laser pulses

Abstract

Purpose

Some forms of keratoplasty assisted by ultrashort-pulse lasers require performing laser cuts close to the endothelium, which requires the knowledge of “safe” values concerning incision depth and pulse energy preserving endothelial cell viability. Our study aims to determine the thresholds for cell death in porcine corneas exposed to ultrashort laser pulses, in terms of laser pulse energy and nearness of the impacts to the endothelium.

Methods

Using a laboratory laser set-up, lamellar cuts were induced while varying pulse energies and distances from the endothelium. A fluorescent staining protocol was used to determine the percentage of surviving endothelial cells. Numerical simulations of the Euler equations for compressible fluids provided pressure level and axial and radial pressure gradient estimates at the endothelium.

Results

Ninety percent of the endothelial cells survived when using 16.5 μJ pulses no closer than 200 μm to the endothelium, or pulses not exceeding 2 μJ at a distance of 50 μm.

The comparison of the observed percentage of surviving cells with the estimates of the shock wave amplitudes and gradients generated by the laser pulses yielded cell death thresholds at amplitudes in the megapascal range, or gradients of the order of 108 Pa/m.

Conclusions

Our results provide limits in terms of pulse energy and distance of the incision from the endothelium within which endothelial cell viability is preserved. Current forms of corneal laser surgery are compatible with these limits. However, these limits will need to be considered for the development of future laser routines working in close proximity to the endothelium.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Al-Yousuf N, Mavrikakis I, Mavrikakis E, Daya SM (2004) Penetrating keratoplasty: indications over a 10 year period. Br J Ophthalmol 88(8):998–1001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Suwan-Apichon O, Reyes JMG, Griffin NB, Barker J, Gore P, Chuck RS (2006) Microkeratome versus femtosecond laser predissection of corneal grafts for anterior and posterior lamellar keratoplasty. Cornea 25(8):966–968

    Article  PubMed  Google Scholar 

  3. 3.

    Soong HK, Malta JB (2009) Perspective Femtosecond Lasers in Ophthalmology. Am J Ophthalmol 147(2):189–197

    Article  PubMed  Google Scholar 

  4. 4.

    Plamann K, Aptel F, Arnold C, Courjaud A, Crotti C, Deloison F, Druon F, Georges P, Hanna M, Legeais J-M, Morin F, Mottay É, Nuzzo V, Peyrot DA, Savoldelli M (2010) Ultrashort pulse laser surgery of the cornea and the sclera. J Opt 12:084002

    Article  Google Scholar 

  5. 5.

    Bourne WM (2001) Cellular changes in transplanted human corneas. Cornea 20(6):560–569

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Muños G, Albarràn-Diego C, Sakla HF, Ferrer-Blasco T, Javaloy J (2011) Effects of LASIK on Corneal Endothelium Using the 15-kHz IntraLase Femtosecond Laser. J Ref Surg 27(9):672–677

    Article  Google Scholar 

  7. 7.

    Resch MD, Zemova E, Marsovszky L, Szentmàry N, Bauer F, Daas L, Pattmöller M, El-Husseiny M, Németh J, Nagy ZZ, Seitz B (2015) In Vivo Confocal Microscopic Imaging of the Cornea After Femtosecond and Excimer Laser-assisted Penetrating Keratoplasty. J Ref Surg 31(9):620–626

    Article  Google Scholar 

  8. 8.

    Vogel A, Busch S (1996) Shock wave emission and cavitation bubble generation by picoseconds and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148–165

    Article  Google Scholar 

  9. 9.

    Doukas AG, McAuliffe DJ, Flotte TJ (1993) Biological effects of laser-induced shock waves: structural and functional cell damage in vitro. Ultrasound Med Biol 19(2):137–146

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249(4):475–482

    Article  PubMed  Google Scholar 

  11. 11.

    Pipparelli A, Thuret G, Toubeau D, He Z, Piselli S, Lefèvre S, Gain P, Muraine M (2011) Pan-Corneal Endothelial Viability Assessment: Application to Endothelial Grafts Predissected by Eye Banks. Invest Ophthalmol Vis Sci 52(8):6018–6025

    Article  PubMed  Google Scholar 

  12. 12.

    Schindelin J, Arganda-Carreras I, Frise E, Kayig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bernard A, Campolmi N, He Z, Ha Thi BM, Piselli S, Forest F, Dumollard J-M, Peoc M, Acquart S, Gain P, Thuret G (2014) CorneaJ: An ImageJ Plugin for Semi-Automated Measurement of Corneal Endothelial Cell Viability. Cornea 33(6):604–609

    Article  PubMed  Google Scholar 

  14. 14.

    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge university press, Cambridge

    Google Scholar 

  15. 15.

    Crotti C, Deloison F, Alahyane F, Aptel F, Kowalczuk L, Legeais J-M, Peyrot DA, Savoldelli M, Plamann K (2013) Wavelength optimization in femtosecond laser corneal surgery. Invest Ophthalmol Vis Sci 54:3340–3349

    Article  PubMed  Google Scholar 

  16. 16.

    Nuzzo V, Savoldelli M, Legeais JM, Plamann K (2010) Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser. J Biomed Opt 15(3):038003

    Article  PubMed  Google Scholar 

  17. 17.

    Kampmeier J, Radt B, Birngruber R, Brinkmann R (2000) Thermal and biomechanical parameters of porcine cornea. Cornea 19:355–363

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4.1:25–34

    Article  Google Scholar 

  19. 19.

    Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819

    CAS  Article  Google Scholar 

  20. 20.

    Venugopalan V (2004) Investigation of laser-induced cell lysis using time-resolved imaging. Appl Phys Lett 84:2940–2942

    Article  Google Scholar 

  21. 21.

    Rau KR, Quinto-Su PA, Venugopalan V (2006) Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys J 91:317–329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Compton JL, Hellman AN, Venugopalan V (2013) Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells. Biophys J 105:2221–2231

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hellman AN, Rau KR, Venugopalan V (2008) Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. J Biophotonics 1:24–35

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dijkink R, Le Gac S, Ohl C-D (2008) Controlled cavitation-cell interaction: trans-membrane transport and viability studies. Phys Med Biol 53:375–390

    Article  PubMed  Google Scholar 

  25. 25.

    Vogel A, Noack J, Huettmann G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissue. Appl Phys B 81:1015

    CAS  Article  Google Scholar 

  26. 26.

    Hu H, Wang X, Zhai H, Zhang N, Wang P (2010) Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl Phys Lett 97:061117

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Gilles Thuret, Zhiguo He, and Philippe Gain from the research unit Biologie, Ingénierie et Imagerie de la Greffe de Cornée, Jean Monnet University, Saint-Étienne, France, for help with the staining protocol and for fruitful discussions. We also thank Ralf Brinkmann from the Institute of Biomedical Optics, Medizinische Universität Lübeck, Germany, for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karsten Plamann.

Ethics declarations

Funding

The RTRA (Advanced Research Cluster) Triangle de la physique provided financial support in the form of a post-doctoral position for Z.E. and a complementary budget for material expenses and consumables.

A.C. and C.M. acknowledge support from the French DGA. The sponsors had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Porcine corneas were used under permission number 91 477 102, issued by the Direction départementale de la protection des populations, Essonne department, France.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.A., Milián, C., Crotti, C. et al. Cell viability and shock wave amplitudes in the endothelium of porcine cornea exposed to ultrashort laser pulses. Graefes Arch Clin Exp Ophthalmol 255, 945–953 (2017). https://doi.org/10.1007/s00417-017-3583-3

Download citation

Keywords

  • Cornea
  • Keratoplasty
  • Cell viability
  • Ultrashort pulse
  • Laser surgery
  • Endothelium