Cell viability and shock wave amplitudes in the endothelium of porcine cornea exposed to ultrashort laser pulses

  • Syed Asad Hussain
  • Carles Milián
  • Caroline Crotti
  • Laura Kowalczuk
  • Fatima Alahyane
  • Zacaria Essaïdi
  • Arnaud Couairon
  • Marie-Claire Schanne-Klein
  • Karsten PlamannEmail author
Basic Science



Some forms of keratoplasty assisted by ultrashort-pulse lasers require performing laser cuts close to the endothelium, which requires the knowledge of “safe” values concerning incision depth and pulse energy preserving endothelial cell viability. Our study aims to determine the thresholds for cell death in porcine corneas exposed to ultrashort laser pulses, in terms of laser pulse energy and nearness of the impacts to the endothelium.


Using a laboratory laser set-up, lamellar cuts were induced while varying pulse energies and distances from the endothelium. A fluorescent staining protocol was used to determine the percentage of surviving endothelial cells. Numerical simulations of the Euler equations for compressible fluids provided pressure level and axial and radial pressure gradient estimates at the endothelium.


Ninety percent of the endothelial cells survived when using 16.5 μJ pulses no closer than 200 μm to the endothelium, or pulses not exceeding 2 μJ at a distance of 50 μm.

The comparison of the observed percentage of surviving cells with the estimates of the shock wave amplitudes and gradients generated by the laser pulses yielded cell death thresholds at amplitudes in the megapascal range, or gradients of the order of 108 Pa/m.


Our results provide limits in terms of pulse energy and distance of the incision from the endothelium within which endothelial cell viability is preserved. Current forms of corneal laser surgery are compatible with these limits. However, these limits will need to be considered for the development of future laser routines working in close proximity to the endothelium.


Cornea Keratoplasty Cell viability Ultrashort pulse Laser surgery Endothelium 



The authors thank Gilles Thuret, Zhiguo He, and Philippe Gain from the research unit Biologie, Ingénierie et Imagerie de la Greffe de Cornée, Jean Monnet University, Saint-Étienne, France, for help with the staining protocol and for fruitful discussions. We also thank Ralf Brinkmann from the Institute of Biomedical Optics, Medizinische Universität Lübeck, Germany, for helpful discussions.

Compliance with ethical standards


The RTRA (Advanced Research Cluster) Triangle de la physique provided financial support in the form of a post-doctoral position for Z.E. and a complementary budget for material expenses and consumables.

A.C. and C.M. acknowledge support from the French DGA. The sponsors had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Porcine corneas were used under permission number 91 477 102, issued by the Direction départementale de la protection des populations, Essonne department, France.


  1. 1.
    Al-Yousuf N, Mavrikakis I, Mavrikakis E, Daya SM (2004) Penetrating keratoplasty: indications over a 10 year period. Br J Ophthalmol 88(8):998–1001CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Suwan-Apichon O, Reyes JMG, Griffin NB, Barker J, Gore P, Chuck RS (2006) Microkeratome versus femtosecond laser predissection of corneal grafts for anterior and posterior lamellar keratoplasty. Cornea 25(8):966–968CrossRefPubMedGoogle Scholar
  3. 3.
    Soong HK, Malta JB (2009) Perspective Femtosecond Lasers in Ophthalmology. Am J Ophthalmol 147(2):189–197CrossRefPubMedGoogle Scholar
  4. 4.
    Plamann K, Aptel F, Arnold C, Courjaud A, Crotti C, Deloison F, Druon F, Georges P, Hanna M, Legeais J-M, Morin F, Mottay É, Nuzzo V, Peyrot DA, Savoldelli M (2010) Ultrashort pulse laser surgery of the cornea and the sclera. J Opt 12:084002CrossRefGoogle Scholar
  5. 5.
    Bourne WM (2001) Cellular changes in transplanted human corneas. Cornea 20(6):560–569CrossRefPubMedGoogle Scholar
  6. 6.
    Muños G, Albarràn-Diego C, Sakla HF, Ferrer-Blasco T, Javaloy J (2011) Effects of LASIK on Corneal Endothelium Using the 15-kHz IntraLase Femtosecond Laser. J Ref Surg 27(9):672–677CrossRefGoogle Scholar
  7. 7.
    Resch MD, Zemova E, Marsovszky L, Szentmàry N, Bauer F, Daas L, Pattmöller M, El-Husseiny M, Németh J, Nagy ZZ, Seitz B (2015) In Vivo Confocal Microscopic Imaging of the Cornea After Femtosecond and Excimer Laser-assisted Penetrating Keratoplasty. J Ref Surg 31(9):620–626CrossRefGoogle Scholar
  8. 8.
    Vogel A, Busch S (1996) Shock wave emission and cavitation bubble generation by picoseconds and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148–165CrossRefGoogle Scholar
  9. 9.
    Doukas AG, McAuliffe DJ, Flotte TJ (1993) Biological effects of laser-induced shock waves: structural and functional cell damage in vitro. Ultrasound Med Biol 19(2):137–146CrossRefPubMedGoogle Scholar
  10. 10.
    Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249(4):475–482CrossRefPubMedGoogle Scholar
  11. 11.
    Pipparelli A, Thuret G, Toubeau D, He Z, Piselli S, Lefèvre S, Gain P, Muraine M (2011) Pan-Corneal Endothelial Viability Assessment: Application to Endothelial Grafts Predissected by Eye Banks. Invest Ophthalmol Vis Sci 52(8):6018–6025CrossRefPubMedGoogle Scholar
  12. 12.
    Schindelin J, Arganda-Carreras I, Frise E, Kayig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefPubMedGoogle Scholar
  13. 13.
    Bernard A, Campolmi N, He Z, Ha Thi BM, Piselli S, Forest F, Dumollard J-M, Peoc M, Acquart S, Gain P, Thuret G (2014) CorneaJ: An ImageJ Plugin for Semi-Automated Measurement of Corneal Endothelial Cell Viability. Cornea 33(6):604–609CrossRefPubMedGoogle Scholar
  14. 14.
    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge university press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Crotti C, Deloison F, Alahyane F, Aptel F, Kowalczuk L, Legeais J-M, Peyrot DA, Savoldelli M, Plamann K (2013) Wavelength optimization in femtosecond laser corneal surgery. Invest Ophthalmol Vis Sci 54:3340–3349CrossRefPubMedGoogle Scholar
  16. 16.
    Nuzzo V, Savoldelli M, Legeais JM, Plamann K (2010) Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser. J Biomed Opt 15(3):038003CrossRefPubMedGoogle Scholar
  17. 17.
    Kampmeier J, Radt B, Birngruber R, Brinkmann R (2000) Thermal and biomechanical parameters of porcine cornea. Cornea 19:355–363CrossRefPubMedGoogle Scholar
  18. 18.
    Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4.1:25–34CrossRefGoogle Scholar
  19. 19.
    Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819CrossRefGoogle Scholar
  20. 20.
    Venugopalan V (2004) Investigation of laser-induced cell lysis using time-resolved imaging. Appl Phys Lett 84:2940–2942CrossRefGoogle Scholar
  21. 21.
    Rau KR, Quinto-Su PA, Venugopalan V (2006) Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. Biophys J 91:317–329CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Compton JL, Hellman AN, Venugopalan V (2013) Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells. Biophys J 105:2221–2231CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hellman AN, Rau KR, Venugopalan V (2008) Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. J Biophotonics 1:24–35CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dijkink R, Le Gac S, Ohl C-D (2008) Controlled cavitation-cell interaction: trans-membrane transport and viability studies. Phys Med Biol 53:375–390CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel A, Noack J, Huettmann G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissue. Appl Phys B 81:1015CrossRefGoogle Scholar
  26. 26.
    Hu H, Wang X, Zhai H, Zhang N, Wang P (2010) Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl Phys Lett 97:061117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Syed Asad Hussain
    • 1
  • Carles Milián
    • 2
  • Caroline Crotti
    • 1
  • Laura Kowalczuk
    • 1
  • Fatima Alahyane
    • 1
  • Zacaria Essaïdi
    • 1
  • Arnaud Couairon
    • 2
  • Marie-Claire Schanne-Klein
    • 3
  • Karsten Plamann
    • 1
    Email author
  1. 1.LOA, ENSTA-ParisTech, École Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance
  2. 2.Centre de Physique Théorique, École Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance
  3. 3.LOB, École polytechnique, CNRS, Inserm 1182Université Paris-SaclayPalaiseauFrance

Personalised recommendations