Skip to main content

Binocular function changes produced in response to overnight orthokeratology

Abstract

Purpose

To analyze the binocular function changes produced on subjects undergoing overnight orthokeratology (OK) treatment over short-term (3 months) and long-term (3 years) wear.

Methods

A prospective, longitudinal study on young adult subjects with low to moderate myopia was carried out. Binocular function was assessed by the following sequence of tests: Distance and near horizontal phoria (Von Graefe technique), distance and near horizontal vergence ranges (Risley rotary prisms), accommodative convergence/accommodation (AC/A) ratio (gradient method) and the near point of convergence (standard push-up technique). The short-term sample consisted of: 21 subjects in the control group, 26 in a corneal refractive therapy (CRT) treatment lenses group and 25 in a Seefree treatment lenses group. Those subjects were evaluated at baseline and at a 3-month follow-up visit. Twenty one subjects were old CRT wearers that attended a 3-year follow-up visit (long-term group).

Results

A statistically significant difference over the 3-month treatment was found for divergence at distance: the break point decreased 1.4 Δ (p = 0.0006) in the CRT group and the recovery point increased 1.2 Δ (p = 0.001) in the Seefree group. Also, the Seefree group had an exophoric trend of 2.3 Δ at near (p = 0.02) and a base-out break decrease of 2.3 Δ (p = 0.03). For the long-term group, only the base-out break point at distant vision showed a statistically significant difference of 4.9 Δ (p = 0.02).

Conclusions

OK induces minimal changes in the binocular function for either short-term or long-term periods, apart from a near exophoric trend over the short-term period.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Jimenez R, Martinez-Almeida L, Salas C, Ortiz C (2011) Contact lenses vs spectacles in myopes: is there any difference in accommodative and binocular function? Graefes Arch Clin Exp Ophthalmol 249(6):925–935. doi:10.1007/s00417-010-1570-z

    Article  PubMed  Google Scholar 

  2. 2.

    Fulk GW, Cyert LA, Parker DE, West RW (2003) The effect of changing from glasses to soft contact lenses on myopia progression in adolescents. Ophthalmic Physiol Opt 23(1):71–77. doi:10.1046/j.1475-1313.2003.00094.x

    Article  PubMed  Google Scholar 

  3. 3.

    Godts D, Tassignon MJ, Gobin L (2004) Binocular vision impairment after refractive surgery. J Cataract Refract Surg 30(1):101–109. doi:10.1016/s0886-3350(03)00412-7

    Article  PubMed  Google Scholar 

  4. 4.

    Godts D, Trau R, Tassignon MJ (2006) Effect of refractive surgery on binocular vision and ocular alignment in patients with manifest or intermittent strabismus. Br J Ophthalmol 90(11):1410–1413. doi:10.1136/bjo.2006.090902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rued TC, Brungardt TF (1984) Exotropia and orthokeratology: a case report. J Am Optom Assoc 55(1):30–42

    CAS  PubMed  Google Scholar 

  6. 6.

    McLeod ADL (2006) Effects of overnight orthokeratology on phoria, vergence, and accommodation in children. Thesis (M S), New England College of Optometry

  7. 7.

    Brand P (2013) The effect of orthokeratology on accommodative and convergence function: a clinic based pilot study. Optom Vis Perform 1(5):162–167

    Google Scholar 

  8. 8.

    Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness. Cornea 30(6):646–654. doi:10.1097/ICO.0b013e31820009bc

    Article  PubMed  Google Scholar 

  9. 9.

    Palomo-Alvarez C, Puell MC (2010) Binocular function in school children with reading difficulties. Graefes Arch Clin Exp Ophthalmol 248(6):885–892. doi:10.1007/s00417-009-1251-y

    Article  PubMed  Google Scholar 

  10. 10.

    Rosenfield M, Ciuffreda KJ, Ong E, Super S (1995) Vergence adaptation and the order of clinical vergence range testing. Optom Vis Sci Off Publ Am Acad Optom 72(4):219–223

    CAS  Article  Google Scholar 

  11. 11.

    Downie LE, Lowe R (2013) Corneal Reshaping Influences Myopic Prescription Stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability. Eye Contact Lens 39(4):303–310. doi:10.1097/ICL.0b013e318298ee76

    Article  PubMed  Google Scholar 

  12. 12.

    Hiraoka T, Okamoto C, Ishii Y, Kakita T, Okamoto F, Oshika T (2008) Time course of changes in ocular higher-order aberrations and contrast sensitivity after overnight orthokeratology. Invest Ophthalmol Vis Sci 49(10):4314–4320. doi:10.1167/iovs.07-1586

    Article  PubMed  Google Scholar 

  13. 13.

    Gifford P, Li M, Lu H, Miu J, Panjaya M, Swarbrick HA (2013) Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci 90(5):439–447. doi:10.1097/OPX.0b013e31828ec594

    Article  PubMed  Google Scholar 

  14. 14.

    González-Mesa A, Villa-Collar C, Lorente-Velázquez A, Nieto-Bona A (2013) Anterior segment changes produced in response to long-term overnight orthokeratology. Curr Eye Res 19. doi:10.3109/02713683.2013.790977

  15. 15.

    Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom J Aust Optom Assoc 89(3):124–143. doi:10.1111/j.1444-0938.2006.00044.x

    Article  Google Scholar 

  16. 16.

    Campbell E (2013) Orthokeratology: an update. Optom Vis Perform 1(1):11–18

    Google Scholar 

  17. 17.

    Scheiman MM, Wick B (2008) Clinical management of binocular vision : heterophoric, accommodative and eye movement disorders. In: 617.758.1. 3rd edn. Lippincott Williams & Wilkins, Philadelphia

  18. 18.

    Sreenivasan V, Irving EL, Bobier WR (2008) Binocular adaptation to near addition lenses in emmetropic adults. Vision Res 48(10):1262–1269. doi:10.1016/j.visres.2008.02.015

    Article  PubMed  Google Scholar 

  19. 19.

    Goss D, Reynolds J, Todd R (2010) Comparison of four dissociated phoria tets: reliability & correlation with symptom survey scores. J Behav Optom 21(4):99–104

    Google Scholar 

  20. 20.

    Sreenivasan V, Irving EL, Bobier WR (2012) Effect of heterophoria type and myopia on accommodative and vergence responses during sustained near activity in children. Vision Res 57:9–17. doi:10.1016/j.visres.2012.01.011

    Article  PubMed  Google Scholar 

  21. 21.

    Han J, Hong S, Lee S, Kim JK, Lee HK, Han SH (2014) Changes in fusional vergence amplitudes after laser refractive surgery for moderate myopia. J Cataract Refract Surg 40(10):1670–1675. doi:10.1016/j.jcrs.2014.01.043

    Article  PubMed  Google Scholar 

  22. 22.

    Cho P, Cheung SW, Edwards M (2005) The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 30(1):71–80. doi:10.1080/02713680590907256

    Article  PubMed  Google Scholar 

  23. 23.

    Walline JJ, Jones LA, Sinnott LT (2009) Corneal reshaping and myopia progression. Br J Ophthalmol 93(9):1181–1185. doi:10.1136/bjo.2008.151365

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kakita T, Hiraoka T, Oshika T (2011) Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 52(5):2170–2174. doi:10.1167/iovs.10-5485

    Article  PubMed  Google Scholar 

  25. 25.

    Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T (2012) Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 53(7):3913–3919. doi:10.1167/iovs.11-8453

    Article  PubMed  Google Scholar 

  26. 26.

    Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R (2012) Myopia control with orthokeratology contact lenses in spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 53(8):5060–5065. doi:10.1167/iovs.11-8005

    Article  PubMed  Google Scholar 

  27. 27.

    Cho P, Cheung S-W (2012) Retardation of Myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 53(11):7077–7085. doi:10.1167/iovs.12-10565

    Article  PubMed  Google Scholar 

  28. 28.

    Swarbrick HA, Alharbi A, Lum E, Watt K (2011) Changes in axial length and refractive error during overnight orthokeratology for myopia control. ARVO Annu Meet Abstr Search Program Plann 2011:2837–2837

    Google Scholar 

  29. 29.

    Goss DA, Wolter KL (1999) Nearpoint phoria changes associated with the cessation of childhood myopia progression. J Am Optom Assoc 70(12):764–768

    CAS  PubMed  Google Scholar 

  30. 30.

    Jorge J, de Almeida JB, Parafita MA (2008) Binocular vision changes in university students: a 3-year longitudinal study. Optom Vis Sci 85(10):999–1006

    Article  Google Scholar 

  31. 31.

    Zhu M, Feng H, Zhu J, Qu X (2014) The impact of amplitude of accommodation on controlling the development of myopia in orthokeratology. Zhonghua Yan Ke Za Zhi 50(1):14–19

    PubMed  Google Scholar 

  32. 32.

    Ren Q, Yue H, Zhou Q (2016) Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodativeconvergence/accommodation. Zhong Nan Da Xue Xue Bao Yi Xue Ban J Cent S Univ Med Sci 41(2):169–173. doi:10.11817/j.issn.1672-7347.2016.02.009

    Google Scholar 

  33. 33.

    Felipe-Marquez G, Nombela-Palomo M, Cacho I, Nieto-Bona A (2015) Accommodative changes produced in response to overnight orthokeratology. Graefes Arch Clin Exp Ophthalmol 253(4):619–626. doi:10.1007/s00417-014-2865-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Interlenco (Madrid, Spain) and Conóptica (Barcelona, Spain) laboratories for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gema Felipe-Marquez.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Felipe-Marquez, G., Nombela-Palomo, M., Palomo-Álvarez, C. et al. Binocular function changes produced in response to overnight orthokeratology. Graefes Arch Clin Exp Ophthalmol 255, 179–188 (2017). https://doi.org/10.1007/s00417-016-3554-0

Download citation

Keywords

  • Orthokeratology
  • Binocular function
  • Phoria
  • Fusional vergences
  • Myopia
  • Contact lenses