Abstract
Purpose
In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia.
Methods
In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera.
Results
We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98.
Conclusions
Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.
References
Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O’Colmain BJ (2004) The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122:495–505. doi:10.1001/archopht.122.4.495
Vitale S, Ellwein L, Cotch MF, Ferris FL 3rd, Sperduto R (2008) Prevalence of refractive error in the United States, 1999-2004. Arch Ophthalmol 126:1111–1119. doi:10.1001/archopht.126.8.1111
Tang WC, Yap MK, Yip SP (2008) A review of current approaches to identifying human genes involved in myopia. Clin Exp Optom 91:4–22. doi:10.1111/j.1444-0938.2007.00181.x
Pararajasegaram R (1999) VISION 2020-the right to sight: from strategies to action. Am J Ophthalmol 128:359–360
Goldschmidt E, Jacobsen N (2014) Genetic and environmental effects on myopia development and progression. Eye (Lond) 28:126–133. doi:10.1038/eye.2013.254
Hawthorne FA, Young TL (2012) Genetic contributions to myopic refractive error: Insights from human studies and supporting evidence from animal models. Exp Eye Res 114:141–149. doi:10.1016/j.exer.2012.12.015
Zhang Q (2015) Genetics of refraction and myopia. Prog Mol Biol Transl Sci 134:269–279. doi:10.1016/bs.pmbts.2015.05.007
Christensen AM, Wallman J (1991) Evidence that increased scleral growth underlies visual deprivation myopia in chicks. Invest Ophthalmol Vis Sci 32:2143–2150
Wojciechowski R, Hysi PG (2013) Focusing in on the complex genetics of myopia. PLoS Genet 9:e1003442. doi:10.1371/journal.pgen.1003442
Hornbeak DM, Young TL (2009) Myopia genetics: a review of current research and emerging trends. Curr Opin Ophthalmol 20:356–362. doi:10.1097/ICU.0b013e32832f8040
Metlapally R, Wildsoet CF (2015) Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci 134:241–248. doi:10.1016/bs.pmbts.2015.05.005
Jacobi FK, Pusch CM (2010) A decade in search of myopia genes. Front Biosci (Landmark Ed) 15:359–372
Tarver JE, Donoghue PC, Peterson KJ (2012) Do miRNAs have a deep evolutionary history? Bioessays 34:857–866. doi:10.1002/bies.201200055
Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540. doi:10.1126/science.1080372
Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002
Davis BN, Hata A (2009) Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18. doi:10.1186/1478-811X-7-18
Bhayani MK, Calin GA, Lai SY (2011) Functional relevance of miRNA sequences in human disease. Mutat Res 731:14–19. doi:10.1016/j.mrfmmm.2011.10.014
Sethupathy P (2016) The promise and challenge of therapeutic microRNA silencing in diabetes and metabolic diseases. Curr Diab Rep 16:52. doi:10.1007/s11892-016-0745-3
Xu S (2009) microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res 28:87–116. doi:10.1016/j.preteyeres.2008.11.003
Raghunath A, Perumal E (2014) Micro-RNAs and their roles in eye disorders. Ophthalmic Res 53:169–186. doi:10.1159/000371853
Andreeva K, Cooper NG (2014) MicroRNAs in the neural retina. Int J Genomics 2014:165897. doi:10.1155/2014/165897
Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ, Redmond TM (2013) Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma. Mol Vis 19:737–750
Menard C, Rezende FA, Miloudi K, Wilson A, Tetreault N, Hardy P, SanGiovanni JP, De Guire V, Sapieha P (2016) MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 7:19171–19184. doi:10.18632/oncotarget.8280
Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P, Palfi A, Farrar GJ (2007) Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 8:R248. doi:10.1186/gb-2007-8-11-r248
Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng J, Xu J, Cheng JQ, Lin JY, Ma X (2009) Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 25:13–20. doi:10.1007/s00381-008-0701-x
Qin Y, Zhao J, Min X, Wang M, Luo W, Wu D, Yan Q, Li J, Wu X, Zhang J (2014) MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract. Biochim Biophys Acta 1842:2439–2447. doi:10.1016/j.bbadis.2014.10.002
Villarreal G Jr, Oh DJ, Kang MH, Rhee DJ (2011) Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest Ophthalmol Vis Sci 52:3391–3397. doi:10.1167/iovs.10-6165
Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE (2011) Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet 89:628–633. doi:10.1016/j.ajhg.2011.09.014
Tsonis PA, Fuentes EJ (2006) Focus on molecules: Pax-6, the eye master. Exp Eye Res 83:233–234. doi:10.1016/j.exer.2005.11.019
Liang CL, Hsi E, Chen KC, Pan YR, Wang YS, Juo SH (2011) A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese. Invest Ophthalmol Vis Sci 52:3500–3505. doi:10.1167/iovs.10-5859
Jiang B, Yap MK, Leung KH, Ng PW, Fung WY, Lam WW, Gu YS, Yip SP (2011) PAX6 haplotypes are associated with high myopia in Han Chinese. PLoS One 6:e19587. doi:10.1371/journal.pone.0019587
Chen KC, Hsi E, Hu CY, Chou WW, Liang CL, Juo SH (2012) MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Invest Ophthalmol Vis Sci 53:2732–2739. doi:10.1167/iovs.11-9272
Seko Y, Shimizu M, Tokoro T (1998) Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res 30:361–367
McFadden SA, Howlett MH, Mertz JR (2004) Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vis Res 44:643–653
Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12:1175–1184
Ernst BJ, Hsu HY (2011) Keratoconus association with axial myopia: a prospective biometric study. Eye Contact Lens 37:2–5. doi:10.1097/ICL.0b013e3181fb2119
Lechner J, Bae HA, Guduric-Fuchs J, Rice A, Govindarajan G, Siddiqui S, Abi Farraj L, Yip SP, Yap M, Das M, Souzeau E, Coster D, Mills RA, Lindsay R, Phillips T, Mitchell P, Ali M, Inglehearn CF, Sundaresan P, Craig JE, Simpson DA, Burdon KP, Willoughby CE (2013) Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest Ophthalmol Vis Sci 54:5266–5272. doi:10.1167/iovs.13-12035
Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684. doi:10.1074/jbc.M809787200
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032. doi:10.1073/pnas.0805038105
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53:209–218. doi:10.1002/hep.23922
Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lu J (2011) miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 45:287–294. doi:10.1165/rcmb.2010-0323OC
Jones JA, Stroud RE, O’Quinn EC, Black LE, Barth JL, Elefteriades JA, Bavaria JE, Gorman JH 3rd, Gorman RC, Spinale FG, Ikonomidis JS (2011) Selective microRNA suppression in human thoracic aneurysms: relationship of miR-29a to aortic size and proteolytic induction. Circ Cardiovasc Genet 4:605–613. doi:10.1161/CIRCGENETICS.111.960419
Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2009) Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 15:2488–2497
Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H (2012) Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One 7:e33766. doi:10.1371/journal.pone.0033766
Tan J, Tong BD, Wu YJ, Xiong W (2014) MicroRNA-29 mediates TGFbeta1-induced extracellular matrix synthesis by targeting wnt/beta-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol 7:7571–7577
Ji X, Zhang J, Wang Y, Sun H, Jia P (2009) Mechanism of Smad 3 signaling pathway and connective tissue growth factor in the inhibition of form deprivation myopia by pirenzepine. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34:349–355
Ma M, Zhang Z, Du E, Zheng W, Gu Q, Xu X, Ke B (2014) Wnt signaling in form deprivation myopia of the mice retina. PLoS One 9:e91086. doi:10.1371/journal.pone.0091086
Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG (2011) Collagen regulation of let-7 in pancreatic cancer involves TGF-beta1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 30:1002–1008. doi:10.1038/onc.2010.485
Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW, Yu CH, Huang HS, Wang JJ, Tsai CH, Chou MY, Yu CC, Hu FW (2011) Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 26:1003–1010. doi:10.3892/or.2011.1360
Liu Y, Li H, Feng J, Cui X, Huang W, Li Y, Su F, Liu Q, Zhu J, Lv X, Chen J, Huang D, Yu F (2013) Lin28 induces epithelial-to-mesenchymal transition and stemness via downregulation of let-7a in breast cancer cells. PLoS One 8:e83083. doi:10.1371/journal.pone.0083083
Xie M, Li Y, Wu J (2016) Genetic variants in MiR-29a associated with high myopia. Ophthalmic Genet 17:1–3. doi:10.3109/13816810.2015.1101776
Metlapally R, Gonzalez P, Hawthorne FA, Tran-Viet KN, Wildsoet CF, Young TL (2013) Scleral micro-RNA signatures in adult and fetal eyes. PLoS One 8:e78984. doi:10.1371/journal.pone.0078984
Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME, Brigstock DR (2014) Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 59:1118–1129. doi:10.1002/hep.26768
Sun M, Yu H, Zhang Y, Li Z, Gao W (2015) MicroRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Sci Rep 5:18351. doi:10.1038/srep18351
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008
Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM (2016) The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 18:1000–1008. doi:10.1002/ejhf.517
Gao SY, Zhou X, Li YJ, Liu WL, Wang PY, Pang M, Xie SY, Lv CJ (2014) Arsenic trioxide prevents rat pulmonary fibrosis via miR-98 overexpression. Life Sci 114:20–28. doi:10.1016/j.lfs.2014.07.037
Ji ML, Lu J, Shi PL, Zhang XJ, Wang SZ, Chang Q, Chen H, Wang C (2016) Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration. J Bone Miner Res 31:900–909. doi:10.1002/jbmr.2753
Xia W, Ni J, Zhuang J, Qian L, Wang P, Wang J (2016) MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol 71:1–11. doi:10.1016/j.biocel.2015.11.017
Monroig-Bosque Pdel C, Rivera CA, Calin GA (2015) MicroRNAs in cancer therapeutics: “from the bench to the bedside”. Expert Opin Biol Ther 15:1381–1385. doi:10.1517/14712598.2015.1074999
Ragusa M, Caltabiano R, Russo A, Puzzo L, Avitabile T, Longo A, Toro MD, Di Pietro C, Purrello M, Reibaldi M (2013) MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis 19:430–440
Ertekin S, Yildirim O, Dinc E, Ayaz L, Fidanci SB, Tamer L (2014) Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol Vis 20:1057–1066
Gemenetzi M, Lotery AJ (2014) The role of epigenetics in age-related macular degeneration. Eye (Lond) 28:1407–1417. doi:10.1038/eye.2014.225
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This work was supported by the National Natural Science Foundation of China (grant no. 81200717). The sponsor had no role in the design or conduct of this research.
Conflict of interest
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Animal experiments
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Jiang, B., Huo, Y., Gu, Y. et al. The role of microRNAs in myopia. Graefes Arch Clin Exp Ophthalmol 255, 7–13 (2017). https://doi.org/10.1007/s00417-016-3532-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00417-016-3532-6