Skip to main content

Advertisement

Log in

Abstract

Purpose

In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia.

Methods

In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera.

Results

We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98.

Conclusions

Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O’Colmain BJ (2004) The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122:495–505. doi:10.1001/archopht.122.4.495

    Article  PubMed  Google Scholar 

  2. Vitale S, Ellwein L, Cotch MF, Ferris FL 3rd, Sperduto R (2008) Prevalence of refractive error in the United States, 1999-2004. Arch Ophthalmol 126:1111–1119. doi:10.1001/archopht.126.8.1111

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tang WC, Yap MK, Yip SP (2008) A review of current approaches to identifying human genes involved in myopia. Clin Exp Optom 91:4–22. doi:10.1111/j.1444-0938.2007.00181.x

    Article  PubMed  Google Scholar 

  4. Pararajasegaram R (1999) VISION 2020-the right to sight: from strategies to action. Am J Ophthalmol 128:359–360

    Article  CAS  PubMed  Google Scholar 

  5. Goldschmidt E, Jacobsen N (2014) Genetic and environmental effects on myopia development and progression. Eye (Lond) 28:126–133. doi:10.1038/eye.2013.254

    Article  CAS  Google Scholar 

  6. Hawthorne FA, Young TL (2012) Genetic contributions to myopic refractive error: Insights from human studies and supporting evidence from animal models. Exp Eye Res 114:141–149. doi:10.1016/j.exer.2012.12.015

    Article  Google Scholar 

  7. Zhang Q (2015) Genetics of refraction and myopia. Prog Mol Biol Transl Sci 134:269–279. doi:10.1016/bs.pmbts.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Christensen AM, Wallman J (1991) Evidence that increased scleral growth underlies visual deprivation myopia in chicks. Invest Ophthalmol Vis Sci 32:2143–2150

    CAS  PubMed  Google Scholar 

  9. Wojciechowski R, Hysi PG (2013) Focusing in on the complex genetics of myopia. PLoS Genet 9:e1003442. doi:10.1371/journal.pgen.1003442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hornbeak DM, Young TL (2009) Myopia genetics: a review of current research and emerging trends. Curr Opin Ophthalmol 20:356–362. doi:10.1097/ICU.0b013e32832f8040

    Article  PubMed  PubMed Central  Google Scholar 

  11. Metlapally R, Wildsoet CF (2015) Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci 134:241–248. doi:10.1016/bs.pmbts.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacobi FK, Pusch CM (2010) A decade in search of myopia genes. Front Biosci (Landmark Ed) 15:359–372

    Article  CAS  Google Scholar 

  13. Tarver JE, Donoghue PC, Peterson KJ (2012) Do miRNAs have a deep evolutionary history? Bioessays 34:857–866. doi:10.1002/bies.201200055

    Article  CAS  PubMed  Google Scholar 

  14. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540. doi:10.1126/science.1080372

    Article  CAS  PubMed  Google Scholar 

  15. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis BN, Hata A (2009) Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18. doi:10.1186/1478-811X-7-18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhayani MK, Calin GA, Lai SY (2011) Functional relevance of miRNA sequences in human disease. Mutat Res 731:14–19. doi:10.1016/j.mrfmmm.2011.10.014

    Article  PubMed  Google Scholar 

  19. Sethupathy P (2016) The promise and challenge of therapeutic microRNA silencing in diabetes and metabolic diseases. Curr Diab Rep 16:52. doi:10.1007/s11892-016-0745-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu S (2009) microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res 28:87–116. doi:10.1016/j.preteyeres.2008.11.003

    Article  PubMed  Google Scholar 

  21. Raghunath A, Perumal E (2014) Micro-RNAs and their roles in eye disorders. Ophthalmic Res 53:169–186. doi:10.1159/000371853

    Article  Google Scholar 

  22. Andreeva K, Cooper NG (2014) MicroRNAs in the neural retina. Int J Genomics 2014:165897. doi:10.1155/2014/165897

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ, Redmond TM (2013) Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma. Mol Vis 19:737–750

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Menard C, Rezende FA, Miloudi K, Wilson A, Tetreault N, Hardy P, SanGiovanni JP, De Guire V, Sapieha P (2016) MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 7:19171–19184. doi:10.18632/oncotarget.8280

    PubMed  PubMed Central  Google Scholar 

  25. Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P, Palfi A, Farrar GJ (2007) Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 8:R248. doi:10.1186/gb-2007-8-11-r248

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng J, Xu J, Cheng JQ, Lin JY, Ma X (2009) Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 25:13–20. doi:10.1007/s00381-008-0701-x

    Article  PubMed  Google Scholar 

  27. Qin Y, Zhao J, Min X, Wang M, Luo W, Wu D, Yan Q, Li J, Wu X, Zhang J (2014) MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract. Biochim Biophys Acta 1842:2439–2447. doi:10.1016/j.bbadis.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  28. Villarreal G Jr, Oh DJ, Kang MH, Rhee DJ (2011) Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest Ophthalmol Vis Sci 52:3391–3397. doi:10.1167/iovs.10-6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE (2011) Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet 89:628–633. doi:10.1016/j.ajhg.2011.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsonis PA, Fuentes EJ (2006) Focus on molecules: Pax-6, the eye master. Exp Eye Res 83:233–234. doi:10.1016/j.exer.2005.11.019

    Article  CAS  PubMed  Google Scholar 

  31. Liang CL, Hsi E, Chen KC, Pan YR, Wang YS, Juo SH (2011) A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese. Invest Ophthalmol Vis Sci 52:3500–3505. doi:10.1167/iovs.10-5859

    Article  CAS  PubMed  Google Scholar 

  32. Jiang B, Yap MK, Leung KH, Ng PW, Fung WY, Lam WW, Gu YS, Yip SP (2011) PAX6 haplotypes are associated with high myopia in Han Chinese. PLoS One 6:e19587. doi:10.1371/journal.pone.0019587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen KC, Hsi E, Hu CY, Chou WW, Liang CL, Juo SH (2012) MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Invest Ophthalmol Vis Sci 53:2732–2739. doi:10.1167/iovs.11-9272

    Article  CAS  PubMed  Google Scholar 

  34. Seko Y, Shimizu M, Tokoro T (1998) Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res 30:361–367

    Article  CAS  PubMed  Google Scholar 

  35. McFadden SA, Howlett MH, Mertz JR (2004) Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vis Res 44:643–653

    Article  CAS  PubMed  Google Scholar 

  36. Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12:1175–1184

    CAS  PubMed  Google Scholar 

  37. Ernst BJ, Hsu HY (2011) Keratoconus association with axial myopia: a prospective biometric study. Eye Contact Lens 37:2–5. doi:10.1097/ICL.0b013e3181fb2119

    Article  PubMed  Google Scholar 

  38. Lechner J, Bae HA, Guduric-Fuchs J, Rice A, Govindarajan G, Siddiqui S, Abi Farraj L, Yip SP, Yap M, Das M, Souzeau E, Coster D, Mills RA, Lindsay R, Phillips T, Mitchell P, Ali M, Inglehearn CF, Sundaresan P, Craig JE, Simpson DA, Burdon KP, Willoughby CE (2013) Mutational analysis of MIR184 in sporadic keratoconus and myopia. Invest Ophthalmol Vis Sci 54:5266–5272. doi:10.1167/iovs.13-12035

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684. doi:10.1074/jbc.M809787200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032. doi:10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53:209–218. doi:10.1002/hep.23922

    Article  CAS  PubMed  Google Scholar 

  42. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lu J (2011) miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 45:287–294. doi:10.1165/rcmb.2010-0323OC

    Article  CAS  PubMed  Google Scholar 

  43. Jones JA, Stroud RE, O’Quinn EC, Black LE, Barth JL, Elefteriades JA, Bavaria JE, Gorman JH 3rd, Gorman RC, Spinale FG, Ikonomidis JS (2011) Selective microRNA suppression in human thoracic aneurysms: relationship of miR-29a to aortic size and proteolytic induction. Circ Cardiovasc Genet 4:605–613. doi:10.1161/CIRCGENETICS.111.960419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2009) Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 15:2488–2497

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H (2012) Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One 7:e33766. doi:10.1371/journal.pone.0033766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan J, Tong BD, Wu YJ, Xiong W (2014) MicroRNA-29 mediates TGFbeta1-induced extracellular matrix synthesis by targeting wnt/beta-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol 7:7571–7577

    PubMed  PubMed Central  Google Scholar 

  47. Ji X, Zhang J, Wang Y, Sun H, Jia P (2009) Mechanism of Smad 3 signaling pathway and connective tissue growth factor in the inhibition of form deprivation myopia by pirenzepine. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34:349–355

    CAS  PubMed  Google Scholar 

  48. Ma M, Zhang Z, Du E, Zheng W, Gu Q, Xu X, Ke B (2014) Wnt signaling in form deprivation myopia of the mice retina. PLoS One 9:e91086. doi:10.1371/journal.pone.0091086

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG (2011) Collagen regulation of let-7 in pancreatic cancer involves TGF-beta1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 30:1002–1008. doi:10.1038/onc.2010.485

    Article  CAS  PubMed  Google Scholar 

  50. Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW, Yu CH, Huang HS, Wang JJ, Tsai CH, Chou MY, Yu CC, Hu FW (2011) Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 26:1003–1010. doi:10.3892/or.2011.1360

    CAS  PubMed  Google Scholar 

  51. Liu Y, Li H, Feng J, Cui X, Huang W, Li Y, Su F, Liu Q, Zhu J, Lv X, Chen J, Huang D, Yu F (2013) Lin28 induces epithelial-to-mesenchymal transition and stemness via downregulation of let-7a in breast cancer cells. PLoS One 8:e83083. doi:10.1371/journal.pone.0083083

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xie M, Li Y, Wu J (2016) Genetic variants in MiR-29a associated with high myopia. Ophthalmic Genet 17:1–3. doi:10.3109/13816810.2015.1101776

    Google Scholar 

  53. Metlapally R, Gonzalez P, Hawthorne FA, Tran-Viet KN, Wildsoet CF, Young TL (2013) Scleral micro-RNA signatures in adult and fetal eyes. PLoS One 8:e78984. doi:10.1371/journal.pone.0078984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME, Brigstock DR (2014) Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 59:1118–1129. doi:10.1002/hep.26768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun M, Yu H, Zhang Y, Li Z, Gao W (2015) MicroRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Sci Rep 5:18351. doi:10.1038/srep18351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM (2016) The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 18:1000–1008. doi:10.1002/ejhf.517

    Article  CAS  PubMed  Google Scholar 

  58. Gao SY, Zhou X, Li YJ, Liu WL, Wang PY, Pang M, Xie SY, Lv CJ (2014) Arsenic trioxide prevents rat pulmonary fibrosis via miR-98 overexpression. Life Sci 114:20–28. doi:10.1016/j.lfs.2014.07.037

    Article  CAS  PubMed  Google Scholar 

  59. Ji ML, Lu J, Shi PL, Zhang XJ, Wang SZ, Chang Q, Chen H, Wang C (2016) Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration. J Bone Miner Res 31:900–909. doi:10.1002/jbmr.2753

    Article  CAS  PubMed  Google Scholar 

  60. Xia W, Ni J, Zhuang J, Qian L, Wang P, Wang J (2016) MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol 71:1–11. doi:10.1016/j.biocel.2015.11.017

    Article  PubMed  Google Scholar 

  61. Monroig-Bosque Pdel C, Rivera CA, Calin GA (2015) MicroRNAs in cancer therapeutics: “from the bench to the bedside”. Expert Opin Biol Ther 15:1381–1385. doi:10.1517/14712598.2015.1074999

    Article  PubMed  Google Scholar 

  62. Ragusa M, Caltabiano R, Russo A, Puzzo L, Avitabile T, Longo A, Toro MD, Di Pietro C, Purrello M, Reibaldi M (2013) MicroRNAs in vitreus humor from patients with ocular diseases. Mol Vis 19:430–440

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ertekin S, Yildirim O, Dinc E, Ayaz L, Fidanci SB, Tamer L (2014) Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol Vis 20:1057–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gemenetzi M, Lotery AJ (2014) The role of epigenetics in age-related macular degeneration. Eye (Lond) 28:1407–1417. doi:10.1038/eye.2014.225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Wang.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81200717). The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Animal experiments

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Huo, Y., Gu, Y. et al. The role of microRNAs in myopia. Graefes Arch Clin Exp Ophthalmol 255, 7–13 (2017). https://doi.org/10.1007/s00417-016-3532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3532-6

Keywords

Navigation