Skip to main content
Log in

Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT)

Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Cite this article

Abstract

Purpose

We aimed to examine the extent to which measurement errors in the determination of retinal nerve fibre layer (RNFL) using spectral-domain optical coherence tomography (SD-OCT) occur in cases of epiretinal membrane and whether systematic deviations are found in the values obtained.

Methods

A macular scan and a circumpapillary scan were performed on 97 eyes of 97 patients using SD-OCT. Group 1 comprised 53 patients with epiretinal membrane at an age of 70 ± 4.8 years (median ± average absolute deviation). Group 2 consisted of 44 patients without any macular pathologies (median age 70 ± 5.8 years). Differences in the thickness of the RNFL and segmentation errors in the detection of the RNFL were recorded quantitatively in both groups and checked for statistical significance using non-parametric tests.

Results

The median central retinal thickness in Group 1 was 357 ± 79 μm (median ± average absolute deviation), and in Group 2 it was 270 ± 11 μm (p < 0.001). The result of the quadrant-by-quadrant measurement of the average RNFL in Group 1 and Group 2, respectively, was: temporal 88 ± 17 and 73 ± 9 μm, inferior 121 ± 17 and 118 ± 15 μm, nasal 87 ± 15 and 89 ± 14 μm and superior 115 ± 15 and 114 ± 9 μm. Temporally, the difference was statistically significant (p < 0.001). Segmentation errors of the RNFL were found in 19 of 53 eyes (35.8 %) in Group 1 and in no eyes (p < 0.001) in Group 2.

Conclusions

In eyes with epiretinal membrane, measuring errors in the SD-OCT occur significantly more frequently than in eyes without any retinal pathologies. If epiretinal membrane and glaucoma are present simultaneously, the results of the automated RNFL measurement using SD-OCT should be critically scrutinised, even if no papillary changes are visible clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  CAS  PubMed  Google Scholar 

  2. Glück R, Rohrschneider K, Kruse FE, Völcker HE (1997) Nachweis von glaukomatösen Nervenfaserschäden Laserpolarimetrie im Vergleich zum entsprechenden Gesichtsfeldausfall. Ophthalmologe 94:815–820

    Article  PubMed  Google Scholar 

  3. Mwanza JC, Budenz DL, Godfrey DG, Neelakantan A, Sayyad FE, Chang RT, Lee RK (2014) Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma. Ophthalmology 121:849–854

    Article  PubMed  Google Scholar 

  4. Grewal DS, Tanna AP (2013) Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol 24:150–161

    Article  PubMed  Google Scholar 

  5. Asrani S, Essaid L, Alder BD, Santiago-Turla C (2014) Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol 132:396–402

    Article  PubMed  Google Scholar 

  6. Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 117:1177–1189

    Article  PubMed  Google Scholar 

  7. Lee DW, Kim JM, Park KH, Choi CY, Cho JG (2010) Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography. J Ophthalmic Vis Res 5:151–157

    PubMed  PubMed Central  Google Scholar 

  8. Cheng CS, Natividad MG, Earnest A, Yong V, Lim BA, Wong HT, Yip LW (2011) Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography. Clin Exp Ophthalmol 39:215–221

    Article  PubMed  Google Scholar 

  9. Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM (2011) Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 249:1039–1045

    Article  PubMed  Google Scholar 

  10. Dawczynski J, Janz S, Kasper M, Franke S, Königsdörffer E, Augsten R, Strobel J (2006) Histologische und immunhistologische Untersuchungen humaner epiretinaler Membranen. Klin Monbl Augenheilkd 223:687–690

    Article  CAS  PubMed  Google Scholar 

  11. Chylack LT Jr, Leske MC, McCarthy D, Khu P, Kashiwagi T, Sperduto R (1989) Lens opacities classification system II (LOCS II). Arch Ophthalmol 107:991–997

    Article  PubMed  Google Scholar 

  12. Jonas JB, Gusek GC, Naumann GO (1988) Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 29:1151–1158

    CAS  PubMed  Google Scholar 

  13. Gass JD (1997) Stereoscopic atlas of macular diseases: diagnosis and treatment, 4th edn. Mosby, St.Louis

    Google Scholar 

  14. Aref AA, Budenz DL (2010) Spectral domain optical coherence tomography in the diagnosis and management of glaucoma. Ophthalmic Surg Lasers Imaging 41(Suppl):S15–S27

    Article  PubMed  Google Scholar 

  15. Klemm M, Rumberger E, Walter A, Richard G (2002) Reproduzierbarkeit von Messungen der retinalen Nervenfaserschichtdicke Vergleich von optischer Kohärenztomographie mit dem Nerve Fiber Analyzer und dem Heidelberg Retinatomographen. Ophthalmologe 99:345–351

    Article  CAS  PubMed  Google Scholar 

  16. Oster SF, Mojana F, Brar M, Yuson RM, Cheng L, Freeman WR (2010) Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina 30:713–718

    Article  PubMed  Google Scholar 

  17. Lee YH, Bae HW, Seo SJ, Lee SY, Beon SH, Kang S, Kim CY (2015) Influence of epiretinal membrane on the measurement of peripapillary retinal nerve fibre layer thickness using spectral-domain coherence tomography. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-307313

    PubMed Central  Google Scholar 

  18. Sebag J (2015) Die vitreoretinale Grenzfläche und ihre Rolle in der Pathogenese vitreomakulärer Erkrankungen. Ophthalmologe 112:10–19

    Article  CAS  PubMed  Google Scholar 

  19. Wang MY, Nguyen D, Hindoyan N, Sadun AA, Sebag J (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29:644–650

    Article  PubMed  Google Scholar 

  20. Massa GC, Vidotti VG, Cremasco F, Lupinacci AP, Costa VP (2010) Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye (Lond) 24:1498–1502

    Article  CAS  Google Scholar 

  21. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K (2013) Effect of cataract and its removal on ganglion cell complex thickness and peripapillary retinal nerve fiber layer thickness measurements by fourier-domain optical coherence tomography. J Glaucoma 22:447–455

    Article  PubMed  Google Scholar 

  22. Hoh ST, Lim MC, Seah SK, Lim AT, Chew SJ, Foster PJ, Aung T (2006) Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology 113:773–777

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Rüfer.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rüfer, F., Bartsch, J.J., Erb, C. et al. Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT). Graefes Arch Clin Exp Ophthalmol 254, 2017–2023 (2016). https://doi.org/10.1007/s00417-016-3453-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3453-4

Keywords

Navigation