Skip to main content

Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs

Abstract

Purpose

A subretinal implant termed CPCB-RPE1 is currently being developed to surgically replace dystrophic RPE in patients with dry age-related macular degeneration (AMD) and severe vision loss. CPCB-RPE1 is composed of a terminally differentiated, polarized human embryonic stem cell-derived RPE (hESC-RPE) monolayer pre-grown on a biocompatible, mesh-supported submicron parylene C membrane. The objective of the present delivery study was to assess the feasibility and 1-month safety of CPCB-RPE1 implantation in Yucatán minipigs, whose eyes are similar to human eyes in size and gross retinal anatomy.

Methods

This was a prospective, partially blinded, randomized study in 14 normal-sighted female Yucatán minipigs (aged 2 months, weighing 24–35 kg). Surgeons were blinded to the randomization codes and postoperative and post-mortem assessments were performed in a blinded manner. Eleven minipigs received CPCB-RPE1 while three control minipigs underwent sham surgery that generated subretinal blebs. All animals except two sham controls received combined local (Ozurdex™ dexamethasone intravitreal implant) and systemic (tacrolimus) immunosuppression or local immunosuppression alone. Correct placement of the CPCB-RPE1 implant was assessed by in vivo optical coherence tomography and post-mortem histology. hESC-RPE cells were identified using immunohistochemistry staining for TRA-1-85 (a human marker) and RPE65 (an RPE marker). As the study results of primary interest were nonnumerical no statistical analysis or tests were conducted.

Results

CPCB-RPE1 implants were reliably placed, without implant breakage, in the subretinal space of the minipig eye using surgical techniques similar to those that would be used in humans. Histologically, hESC-RPE cells were found to survive as an intact monolayer for 1 month based on immunohistochemistry staining for TRA-1-85 and RPE65.

Conclusions

Although inconclusive regarding the necessity or benefit of systemic or local immunosuppression, our study demonstrates the feasibility and safety of CPCB-RPE1 subretinal implantation in a comparable animal model and provides an encouraging starting point for human studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379(9827):1728–1738. doi:10.1016/S0140-6736(12)60282-7

    Article  PubMed  Google Scholar 

  2. 2.

    Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson NC Jr, Desai U (1991) A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 22(2):102–108

    CAS  PubMed  Google Scholar 

  3. 3.

    Algvere PV, Berglin L, Gouras P, Sheng Y, Kopp ED (1997) Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefes Arch Clin Exp Ophthalmol 235(3):149–158

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720. doi:10.1016/S0140-6736(12)60028-2

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554. doi:10.1016/j.preteyeres.2007.02.002

    Article  PubMed  Google Scholar 

  6. 6.

    da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26(6):598–635. doi:10.1016/j.preteyeres.2007.07.001

    Article  PubMed  Google Scholar 

  7. 7.

    Lu B, Zhu D, Hinton D, Humayun MS, Tai YC (2012) Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices 14(4):659–667. doi:10.1007/s10544-012-9645-8

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hu Y, Liu L, Lu B, Zhu D, Ribeiro R, Diniz B, Thomas PB, Ahuja AK, Hinton DR, Tai YC, Hikita ST, Johnson LV, Clegg DO, Thomas BB, Humayun MS (2012) A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 48(4):186–191. doi:10.1159/000338749

    Article  PubMed  Google Scholar 

  9. 9.

    Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO (2013) Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med 7(8):642–653. doi:10.1002/term.1458

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST (2015) Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med 4(2):165–177. doi:10.5966/sctm.2014-0179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hsiung J, Zhu D, Hinton DR (2015) Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med 4(1):10–20. doi:10.5966/sctm.2014-0205

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54(7):5087–5096. doi:10.1167/iovs.12-11239

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Tang PH, Buhusi MC, Ma JX, Crouch RK (2011) RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model. J Neurosci 31(50):18618–18626. doi:10.1523/JNEUROSCI.4265-11.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Del Priore LV, Tezel TH, Kaplan HJ (2004) Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest Ophthalmol Vis Sci 45(3):985–992

    Article  PubMed  Google Scholar 

  15. 15.

    Guduric-Fuchs J, Chen W, Price H, Archer DB, Cogliati T (2011) RPE and neuronal differentiation of allotransplantated porcine ciliary epithelium-derived cells. Mol Vis 17:2580–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kiilgaard JF, Prause JU, Prause M, Scherfig E, Nissen MH, la Cour M (2007) Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs. Invest Ophthalmol Vis Sci 48(1):355–360. doi:10.1167/iovs.05-1565

    Article  PubMed  Google Scholar 

  17. 17.

    Kiilgaard JF, Scherfig E, Prause JU, la Cour M (2012) Transplantation of amniotic membrane to the subretinal space in pigs. Stem Cells Int 2012:716968. doi:10.1155/2012/716968

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kyhn MV, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2008) Functional implications of short-term retinal detachment in porcine eyes: study by multifocal electroretinography. Acta Ophthalmol 86(1):18–25. doi:10.1111/j.1600-0420.2007.00983.x

    Article  PubMed  Google Scholar 

  19. 19.

    Li SY, Yin ZQ, Chen SJ, Chen LF, Liu Y (2009) Rescue from light-induced retinal degeneration by human fetal retinal transplantation in minipigs. Curr Eye Res 34(7):523–535

    Article  PubMed  Google Scholar 

  20. 20.

    Maaijwee KJ, van Meurs JC, Kirchhof B, Mooij CM, Fischer JH, Mackiewicz J, Kobuch K, Joussen AM (2007) Histological evidence for revascularisation of an autologous retinal pigment epithelium--choroid graft in the pig. Br J Ophthalmol 91(4):546–550. doi:10.1136/bjo.2006.103259

    Article  PubMed  Google Scholar 

  21. 21.

    Warfvinge K, Kiilgaard JF, Klassen H, Zamiri P, Scherfig E, Streilein W, Prause JU, Young MJ (2006) Retinal progenitor cell xenografts to the pig retina: immunological reactions. Cell Transplant 15(7):603–612

    Article  PubMed  Google Scholar 

  22. 22.

    Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, Kellner L, Stanzel BV, Jahn C, Feichtinger H (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45(11):4151–4160. doi:10.1167/iovs.04-0118

    Article  PubMed  Google Scholar 

  23. 23.

    Joussen AM, Heussen FM, Joeres S, Llacer H, Prinz B, Rohrschneider K, Maaijwee KJ, van Meurs J, Kirchhof B (2006) Autologous translocation of the choroid and retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 142(1):17–30. doi:10.1016/j.ajo.2006.01.090

    Article  PubMed  Google Scholar 

  24. 24.

    van Meurs JC, Van Den Biesen PR (2003) Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 136(4):688–695

    Article  PubMed  Google Scholar 

  25. 25.

    Treumer F, Bunse A, Klatt C, Roider J (2007) Autologous retinal pigment epithelium-choroid sheet transplantation in age-related macular degeneration: morphological and functional results. Br J Ophthalmol 91(3):349–353. doi:10.1136/bjo.2006.102152

    Article  PubMed  Google Scholar 

  26. 26.

    Szurman P, Roters S, Grisanti S, Aisenbrey S, Schraermeyer U, Luke M, Bartz-Schmidt KU, Thumann G (2006) Ultrastructural changes after artificial retinal detachment with modified retinal adhesion. Invest Ophthalmol Vis Sci 47(11):4983–4989. doi:10.1167/iovs.06-0491

    Article  PubMed  Google Scholar 

  27. 27.

    Christiansen AT, Tao SL, Smith M, Wnek GE, Prause JU, Young MJ, Klassen H, Kaplan HJ, la Cour M, Kiilgaard JF (2012) Subretinal implantation of electrospun, short nanowire, and smooth poly(epsilon-caprolactone) scaffolds to the subretinal space of porcine eyes. Stem Cells Int 2012:454295. doi:10.1155/2012/454295

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, Rowland T, Clegg DO, Kashani AH, Hinton DR, Humayun MS (2015) Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res 48:1–39. doi:10.1016/j.preteyeres.2015.06.004

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Tezel TH, Del Priore LV, Kaplan HJ (2004) Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci 45(9):3337–3348. doi:10.1167/iovs.04-0193

    Article  PubMed  Google Scholar 

  30. 30.

    Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA (2005) Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res 80(2):235–248. doi:10.1016/j.exer.2004.09.006

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Phillips SJ, Sadda SR, Tso MO, Humayan MS, de Juan E Jr, Binder S (2003) Autologous transplantation of retinal pigment epithelium after mechanical debridement of Bruch’s membrane. Curr Eye Res 26(2):81–88

    Article  PubMed  Google Scholar 

  32. 32.

    Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J (2004) The influence of path length and matrix components on ageing characteristics of transport between the choroid and the outer retina. Invest Ophthalmol Vis Sci 45(5):1493–1498

    Article  PubMed  Google Scholar 

  33. 33.

    Pauleikhoff D, Loffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefes Arch Clin Exp Ophthalmol 240(7):533–538. doi:10.1007/s00417-002-0505-8

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Ahir A, Guo L, Hussain AA, Marshall J (2002) Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 43(2):458–465

    PubMed  Google Scholar 

  35. 35.

    Falabella P, Koss MJ, Stefanini FR, Pfister M, Chader GJ, Thomas BB, Thomas P, Clegg DO, Hinton DR, Humayun MS (2014) Safety outcome of subretinal human embryonic stem cell-derived pigment epithelium (hESC-RPE) transplantation in Yucatan mini-pigs with oral or intravenous immunosupression. Invest Ophthalmol Vis Sci 55(13):2674

    Google Scholar 

  36. 36.

    Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356. doi:10.1177/0300985811402846

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the California Institute for Regenerative Medicine DR1-01444, TG2-01161, TG2-01151, CL1-00521 and FA1-00616 grants, NIH Core Grant EY03040, Research to Prevent Blindness, The Arnold and Mabel Beckman Foundation, The Beatrice Apple Revocable Living Trust, The Garland Initiative for Vision, The Foundation Fighting Blindness Wynn-Gund Translational Research Acceleration Program, and the UCSB Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. Michael Koss received a research fellowship grant from the German Research Foundation (DFG), Bonn, Germany (DFG Ko4294/1-1). The authors thank Ernesto Baron and his team for excellent technical assistance with the histology. We also thank J. Cito Habicht, PhD, and Teisha R. Rowland, PhD, who provided writing and editing assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Koss.

Ethics declarations

Funding

The California Institute for Regenerative Medicine provided financial support in the form of grant funding (DR1-01444, TG2-01161, TG2-01151, CL1-00521, and FA1-00616). The U.S. National Institutes of Health provided financial support in the form of grant funding (NIH Core Grant EY03040). Research to Prevent Blindness, The Arnold and Mabel Beckman Foundation, The Beatrice Apple Revocable Living Trust, The Garland Initiative for Vision, The Foundation Fighting Blindness Wynn-Gund Translational Research Acceleration Program, and the UCSB Institute for Collaborative Biotechnologies provided financial support through grant W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred. The German Research Foundation (DFG), Bonn, Germany provided financial support in the form of a research fellowship grant to Michael J. Koss (DFG Ko4294/1-1).

The sponsors had no role in the design or conduct of this research.

Conflict of interest

MSH, DRH, and DOC are co-founders of Regenerative Patch Technologies (RPT), LLC. All other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koss, M.J., Falabella, P., Stefanini, F.R. et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs. Graefes Arch Clin Exp Ophthalmol 254, 1553–1565 (2016). https://doi.org/10.1007/s00417-016-3386-y

Download citation

Keywords

  • Human embryonic stem cells
  • Retinal pigment epithelium
  • Macular degeneration
  • Preclinical trial
  • Animal model