Skip to main content

Advertisement

Log in

Evaluation of mechanical closure resistance of sutureless vitrectomy sclerotomies after conjunctival cauterization with bipolar diathermy forceps

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Suturing is the most widely used technique to close leaking sclerotomies after transconjunctival sutureless vitrectomy (TSV). However, with the aim of avoiding the disadvantages caused by conjunctival stitches, there have been described other closure techniques, such as the cauterization of the conjunctiva placed over the incisions. To continue advancing knowledge of the incisional occlusion effect achieved by conjunctival diathermy, it would be also interesting to study the wound closure resistance obtained under intraocular pressure (IOP) changes, given that in the early postoperative period eyes are subjected to pressure stress. In our study, we compare the mechanical resistance observed in sclerotomies treated with bipolar diathermy after TSV compared to that found in incisions in which cauterization was not performed.

Methods

This was an experimental, randomized, and observer-masked study in which 23-gauge TSV was performed in 80 cadaveric pig eyes. Once each vitrectomy was finished, cauterization was performed with bipolar diathermy forceps on the conjunctiva placed over one of the superior sclerotomy sites; no maneuver was performed over the other superior incision. IOP was gradually increased by means of the vitrectomy system (Accurus; Alcon Laboratories, TX) until one of the superior sclerotomies opened, allowing internal ocular solution to escape.

Results

In 35 % of cases (28 of 80 eyes), sclerotomies subjected to diathermy allowed intraocular fluid escape first (p = 0.01). When comparing opening pressure values, cauterized incisions leaked at significantly higher pressure levels than those in which diathermy was not applied (p < 0.001).

Conclusions

Bipolar diathermy on sutureless sclerotomies has demonstrated to be, in our experimental model, an effective method for increasing the sclerotomy closure resistance. Although its use in vitrectomized eyes has previously been described, our study is the first to analyze the response of cauterized sclerotomies to IOP increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eckardt C (2005) Transconjunctival sutureless 23-gauge vitrectomy. Retina 25:208–211

    Article  PubMed  Google Scholar 

  2. Fujii GY, De Juan JE, Humayun MS, Pieramici DJ, Chang TS, Awh C, Ng E, Barnes A, Wu SL, Sommerville DN (2002) A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology 109:1807–1812

    Article  PubMed  Google Scholar 

  3. Kellner L, Wimpissinger B, Stolba U, Brannath W, Binder S (2007) 25-gauge vs 20- gauge system for pars plana vitrectomy: a prospective randomized clinical trial. Br J Ophthalmol 91:945–948

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yanyali A, Celik E, Horozoglu F, Nohutcu AF (2005) Corneal topographic changes after transconjunctival (25-gauge) sutureless vitrectomy. Am J Ophthalmol 140:939–941

    Article  PubMed  Google Scholar 

  5. Shaikh S, Ho S, Richmond PP, Olson JC, Barnes CD (2007) Untoward outcomes in 25- gauge versus 20-gauge vitreoretinal surgery. Retina 27:1048–1053

    Article  PubMed  Google Scholar 

  6. Scott IU, Flynn HW Jr, Dev S, Shaikh S, Mittra RA, Arevalo JF, Kychenthal A, Acar N (2008) Endophthalmitis after 25-gauge and 20-gauge pars plana vitrectomy: incidence and outcomes. Retina 28:138–142

    Article  PubMed  Google Scholar 

  7. Kunimoto DY, Kaiser RS (2007) Incidence of endophthalmitis after 20- and 25-gauge vitrectomy. Ophthalmology 114:2133–2137

    Article  PubMed  Google Scholar 

  8. Lee BR, Song Y (2008) Releasable suture technique for the prevention of incompetent wound closure in transconjunctival vitrectomy. Retina 28:1163–1165

    Article  PubMed  Google Scholar 

  9. Chan SM, Boisjoly H (2004) Advances in the use of adhesives in ophthalmology. Curr Opin Ophthalmol 15:305–310

    Article  PubMed  Google Scholar 

  10. Barak Y, Lee ES, Schaal S (2014) Sealing effect of external diathermy on leaking sclerotomies after small-gauge vitrectomy: a clinicopathological report. JAMA Ophthalmol 7:891–892

    Article  Google Scholar 

  11. Boscia F, Besozzi G, Recchimurzo N, Sborgia L, Furino C (2011) Cauterization for prevention of leaking sclerotomies after 23-gauge transconjunctival pars plana vitrectomy: an easy way to obtain sclerotomy closure. Retina 31:988–990

    Article  PubMed  Google Scholar 

  12. Reibaldi M, Longo A, Reibaldi A, Avitabile T, Pulvirenti A, Lippolis G, Mininni F, La Tegola MG, Sborgia L, Recchimurzo N, Sborgia C, Boscia F (2013) Diathermy of leaking sclerotomies after 23-gauge transconjunctival pars plana vitrectomy: a prospective study. Retina 33:939–945

    Article  PubMed  Google Scholar 

  13. Miller D (1967) Pressure of the lid on the eye. Arch Ophthalmol 78:328–330

    Article  CAS  PubMed  Google Scholar 

  14. Coleman DJ, Trokel S (1969) Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol 82:637–640

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Guajardo L, Benitez-Herreros J, Silva-Mato A (2011) Experimental model to evaluate mechanical closure resistance of sutureless vitrectomy sclerotomies using pig eyes. Invest Ophthalmol Vis Sci 52:4080–4084

    Article  PubMed  Google Scholar 

  16. Zhengyu S, Fang W, Ying F, Qinghua Q (2007) The experimental research of rabbit’s sclerotomy sites undergoing transconjunctival sutureless vitrectomy. Curr Eye Res 32:647–652

    Article  PubMed  Google Scholar 

  17. Hikichi T, Yoshida A, Hasegawa T, Ohnishi M, Sato T, Muraoka S (1998) Wound healing of scleral self-sealing incision: a comparison of ultrasound biomicroscopy and histology findings. Graefe’s Arch Clin Exp Ophthalmol 236:775–778

    Article  CAS  Google Scholar 

  18. Mihailovic Z, Atanasijevic T, Popovic V, Milosevic MB (2011) Could lactates in vitreous humour be used to estimate the time since death. Med Sci Law 51:156–160

    Article  PubMed  Google Scholar 

  19. López-Guajardo L, Pareja-Esteban J, Teus-Guezala MA (2006) Oblique sclerotomy technique for prevention of incompetent wound closure in transconjunctival 25-gauge vitrectomy. Am J Ophthalmol 141:1154–1156

    Article  PubMed  Google Scholar 

  20. Chieh JJ, Rogers AH, Wiegand TW, BaumalL CR, Reichel E, Duker JS (2009) Short-term safety of 23-gauge single-step transconjunctival vitrectomy surgery. Retina 29:1486–1490

    Article  PubMed  Google Scholar 

  21. Parolini B, Prigione G, Romanelli F, Cereda MG, Sartore M, Pertile G (2010) Postoperative complications and intraocular pressure in 943 consecutive cases of 23-gauge transconjunctival pars plana vitrectomy with 1-year follow-up. Retina 30:107–111

    Article  PubMed  Google Scholar 

  22. Woo SJ, Park KH, Hwang JM, Kim JH, Yu YS, Chung H (2009) Risk factors associated with sclerotomy leakage and postoperative hypotony after 23-gauge transconjunctival sutureless vitrectomy. Retina 29:456–463

    Article  PubMed  Google Scholar 

  23. Fine HF, Iranmanesh R, Iturralde D, Spaide RF (2007) Outcomes of 77 consecutive cases of 23-gauge transconjunctival vitrectomy surgery for posterior segment disease. Ophthalmology 114:1197–1200

    Article  PubMed  Google Scholar 

  24. Gupta OP, Ho AC, Kaiser PK, Regillo CD, Chen S, Dyer DS, Dugel PU, Gupta S, Pollack JS (2008) Short-term outcomes of 23-gauge pars plana vitrectomy. Am J Ophthalmol 146:193–197

    Article  PubMed  Google Scholar 

  25. Tewari A, Shah GK, Fang A (2008) Visual outcomes with 23-gauge transconjunctival sutureless vitrectomy. Retina 28:258–262

    Article  PubMed  Google Scholar 

  26. Ho LY, Garretson BR, Ranchod TM, Balasubramaniam M, Ruby AJ, Capone A Jr, Drenser KA, Williams GA, Hassan TS (2011) Study of intraocular pressure after 23-gauge and 25-gauge pars plana vitrectomy randomized to fluid versus air fill. Retina 31:1109–1117

    Article  PubMed  Google Scholar 

  27. Kim MJ, Park KH, Hwang JM, Yu HG, Yu YS, Chung H (2007) The safety and efficacy of transconjunctival sutureless 23-gauge vitrectomy. Korean J Ophthalmol 21:201–207

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lin AL, Ghate DA, Robertson ZM, O’Sullivan PS, May WL, Chen CJ (2011) Factors affecting wound leakage in 23-gauge sutureless pars plana vitrectomy. Retina 31:1101–1108

    Article  PubMed  Google Scholar 

  29. Lott MN, Manning MH, Singh J, Zhang H, Singh H, Marcus DM (2008) 23-gauge vitrectomy in 100 eyes: short-term visual outcomes and complications. Retina 28:1193–1200

    Article  PubMed  Google Scholar 

  30. Refojo MF, Dohlman CH, Ahmad B, Carroll JM, Allen JC (1968) Evaluation of adhesives for corneal surgery. Arch Ophthalmol 80:645–656

    Article  CAS  PubMed  Google Scholar 

  31. Vote BJ, Elder MJ (2000) Cyanoacrylate glue for corneal perforations: a description of a surgical technique and a review of the literature. Clin Exp Ophthalmol 28:437–442

    Article  CAS  Google Scholar 

  32. Weiss JL, Williams P, Lindstrom RL, Doughman DJ (1983) The use of tissue adhesives in corneal perforations. Ophthalmology 90:610–615

    Article  CAS  PubMed  Google Scholar 

  33. Hariprasad SM, Singh A (2011) Polyethylene glycol hydrogel polymer sealant for vitrectomy surgery: an in vitro study of sutureless vitrectomy incision closure. Arch Ophthalmol 129:322–325

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Hosseini M, Hariprasad SM (2010) Polyethylene glycol hydrogel polymer sealant for closure of sutureless sclerotomies: a histologic study. Am J Ophthalmol 150:346–351

    Article  CAS  PubMed  Google Scholar 

  35. Miki D, Dastgheib K, Kim T, Pfister-Serres A, Smeds KA, Inoue M, Hatchell DL, Grinstaff MW (2002) A photopolymerized sealant for corneal lacerations. Cornea 21:393–399

    Article  PubMed  Google Scholar 

  36. Kaufman HE, Insler MS, Ibrahim-Elzembely HA, Kaufman SC (2003) Human fibrin tissue adhesive for sutureless lamellar keratoplasty and scleral patch adhesion. Ophthalmology 110:2168–2172

    Article  PubMed  Google Scholar 

  37. Radosevich M, Goubran HA, Burnouf T (1997) Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang 72:133–143

    Article  CAS  PubMed  Google Scholar 

  38. Papatheofanis FJ, Barmada R (1993) The principles and applications of surgical adhesives. Surg Annu 25:49–81

    PubMed  Google Scholar 

  39. Panda A, Kumar S, Kumar A, Bansal R, Bhartiya S (2009) Fibrin glue in ophthalmology. Indian J Ophthalmol 57:371–379

    Article  PubMed Central  PubMed  Google Scholar 

  40. Atrah HI (1994) Fibrin glue. Br Med J 308:933–934

    Article  CAS  Google Scholar 

  41. Benitez-Herreros J, Lopez-Guajardo L, Camara-Gonzalez C, Perez-Crespo A, Silva-Mato A, Alvaro-Meca A, Teus MA (2013) Influence of incisional vitreous incarceration in sclerotomy closure competency after transconjunctival sutureless vitrectomy. Invest Ophthalmol Vis Sci 54:4366–4371

    Article  PubMed  Google Scholar 

  42. Rizzo S, Genovesi-Ebert F, Vento A, Miniaci S, Cresti F, Palla M (2007) Modified incision in 25-gauge vitrectomy in the creation of a tunneled airtight sclerotomy: an ultrabiomicroscopic study. Graefes Arch Clin Exp Ophthalmol 245:1281–1288

    Article  PubMed  Google Scholar 

  43. Lopez-Guajardo L, Vleming-Pinilla E, Pareja-Esteban J, Teus-Guezala MA (2007) Ultrasound biomicroscopy study of direct and oblique 25-gauge vitrectomy sclerotomies. Am J Ophthalmol 143:881–883

    Article  PubMed  Google Scholar 

  44. Olsen TW, Sanderson S, Feng X, Hubbard WC (2002) Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 43:2529–2532

    PubMed  Google Scholar 

  45. Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF (1998) Human sclera: thickness and surface area. Am J Ophthalmol 125:237–241

    Article  CAS  PubMed  Google Scholar 

  46. Nicoli S, Ferrari G, Quarta M, Macaluso C, Govoni P, Dallatana D, Santi P (2009) Porcine sclera as a model of human sclera for in vitro transport experiments: histology, SEM, and comparative permeability. Mol Vis 15:259–266

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lee B, Litt M, Buchsbaum G (1994) Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology 31:339–351

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Royal Academy of Medicine of Cadiz awarded this work with the Doctor Santiago Fernandez-Repeto y Repeto Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Benitez-Herreros.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benitez-Herreros, J., Lopez-Guajardo, L., Vazquez-Blanco, M. et al. Evaluation of mechanical closure resistance of sutureless vitrectomy sclerotomies after conjunctival cauterization with bipolar diathermy forceps. Graefes Arch Clin Exp Ophthalmol 254, 489–495 (2016). https://doi.org/10.1007/s00417-015-3243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3243-4

Keywords

Navigation