Skip to main content
Log in

Anterior lens epithelium in intumescent white cataracts - scanning and transmission electron microscopy study

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Our purpose was to study the structure of the lens epithelial cells (LECs) of intumescent white cataracts (IC) in comparison with nuclear cataracts (NC) in order to investigate possible structural reasons for development of IC.

Methods

The anterior lens capsule (aLC: basement membrane and associated LECs) were obtained from cataract surgery and prepared for scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Results

We observed by SEM that in IC, LEC swelling was pronounced with the clefts surrounding the groups of LECs. Another structural feature was spherical formations, that were observed on the apical side of LEC’s, towards the fibre cell layer, both by SEM and TEM. Development of these structures, bulging out from the apical cell membrane of the LEC’s and disrupting it, could be followed in steps towards the sphere formation. The degeneration of the lens epithelium and the structures of the aLC in IC similar to Morgagnian globules were also observed. None of these structural changes were observed in NC.

Conclusions

We show by SEM and TEM that, in IC, LECs have pronounced structural features not observed in NC. This supports the hypothesis that the disturbed structure of LECs plays a role in water accumulation in the IC lens. We also suggest that, in IC, LECs produce bulging spheres that represent unique structures of degenerated material, extruded from the LEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giblin FJ, Chakrapani B, Reddy VN (1976) Glutathione and lens epithelial function. Invest Ophthalmol 15:381–393

    PubMed  CAS  Google Scholar 

  2. Bhat SP (2001) The ocular lens epithelium. Biosci Rep 21:537–563

    Article  PubMed  CAS  Google Scholar 

  3. Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366:1278–1292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Fischbarg J, Diecke FP, Kuang K, Yu B, Kang F, Iserovich P, Li Y, Rosskothen H, Koniarek JP (1999) Transport of fluid by lens epithelium. Am J Physiol Cell Physiol 276:548–557

    Google Scholar 

  5. Delamere NA, Tamiya S (2009) Lens ion transport: from basic concepts to regulation of Na, K-ATPase activity. Exp Eye Res 88:140–143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Rhodes JD, Sanderson J (2009) The mechanisms of calcium homeostasis and signalling in the lens. Exp Eye Res 88:226–234

    Article  PubMed  CAS  Google Scholar 

  7. Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50

    PubMed  CAS  Google Scholar 

  8. Zampighi GA, Eskandari S, Kremen M (2000) Epithelial organization of the mammalian lens. Exp Eye Res 71:415–435

    Article  PubMed  CAS  Google Scholar 

  9. Candia O (2004) Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res 78:527–535

    Article  PubMed  CAS  Google Scholar 

  10. Donaldson PJ, Musil LS, Mathias RT (2010) Point: A critical appraisal of the lens circulation model-An experimental paradigm for understanding the maintenance of lens transparency? Invest Ophthalmol Vis Sci 51:2303–2306

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dahm R, van Marle J, Quinlan RA, Prescott AR, Vrensen GF (2011) Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philos Trans R Soc Lond B Biol Sci 366:1265–1277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Karim AKA, Jacob TJC, Thompson GM (1987) The human anterior lens capsule: Cell density, morphology and mitotic index in normal and cataractous lenses. Exp Eye Res 45:865–874

    Article  PubMed  CAS  Google Scholar 

  13. Hightower KR, McCready JP (1991) Effect of selenite on epithelium of cultured rabbit lens. Invest Ophthalmol Vis Sci 32:406–409

    PubMed  CAS  Google Scholar 

  14. Spector A, Wang GM, Wang RR, Garner WH, Moll H (1993) The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract. Curr Eye Res 12:163–179

    Article  PubMed  CAS  Google Scholar 

  15. Brown NP, Bron AJ (1996) Lens disorders: a clinical manual of cataract diagnosis. Butterworth-Heinenmann, Oxford

    Google Scholar 

  16. Hawlina M, Stunf S, Hvala A (2011) Ultrastructure of anterior lens capsule of intumescent white cataract. Acta Ophthalmol 89:367–370

    Article  Google Scholar 

  17. Stunf S, Hvala A, Vidovič Valentinčič N, Kraut A, Hawlina M (2012) Ultrastructure of the anterior lens capsule and epithelium in cataracts associated with uveitis. Ophthalmic Res 48:12–21

    Article  PubMed  Google Scholar 

  18. Hightower KR (1995) The role of the lens epithelium in development of UV cataract. Curr Eye Res 14:71–78

    Article  PubMed  CAS  Google Scholar 

  19. Delamere NA, Tamiya S (2004) Expression, regulation and function of Na, K ATP-ase in the lens. Prog Retin Eye Res 23:593–615

    Article  PubMed  CAS  Google Scholar 

  20. Paterson CA, Zeng J, Husseini Z, Borchman D, Delamere NA, Garland D, Jimenez-Asensio J (1997) Calcium ATPase activity and membrane structure in clear and cataractous human lenses. Curr Eye Res 16:333–338

    Article  PubMed  CAS  Google Scholar 

  21. Tang D, Borchman D, Yappert MC, Vrensen GF, Rasi V (2003) Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses. Invest Ophthalmol Vis Sci 44:2059–2066

    Article  PubMed  Google Scholar 

  22. Marian MJ, Mukhopadhyay P, Borchman D, Paterson CA (2008) Plasma membrane Ca-ATPase isoform expression in human cataractous lenses compared to age-matched clear lenses. Ophthalmic Res 40:86–93

    Article  PubMed  CAS  Google Scholar 

  23. Andjelic S, Zupancic G, Hawlina M (2011) The preparations used to study calcium in lens epithelial cells and its role in cataract formation. J Clin Exp Ophthalmol S1:002. doi:10.4172/2155-9570.S1-002

    Google Scholar 

  24. Andjelic S, Hawlina M (2012) Cataractogenesis. Zdrav Vestn Slov Med J 81:I-122–132

  25. Vrensen GF (2009) Early cortical lens opacities: a short overview. Acta Ophthalmol 87:602–610

    Article  PubMed  Google Scholar 

  26. Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Charras GT (2008) A short history of blebbing. J Microsc 231:466–478

    Article  PubMed  CAS  Google Scholar 

  28. Jin S, Shimizu M, Balasubramanyam A, Epstein HF (2000) Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells. Cell Motil Cytoskeleton 45:133–148

    Article  PubMed  CAS  Google Scholar 

  29. Giblin FJ, Reddan JR, Schrimscher L, Dziedzic DC, Reddy VN (1990) The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp Eye Res 50:795–804

    Article  PubMed  CAS  Google Scholar 

  30. Zhao S, Liao H, Ao M, Wu L, Zhang X, Chen Y (2014) Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphate level in the plasma membrane. FEBS Open Bio 4:190–199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Bereiter-Hahn J, Luck M, Miebach T, Stelzer HK, Voth M (1990) Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J Cell Sci 96:171–188

    PubMed  Google Scholar 

  32. Erickson CA, Trinkaus JP (1976) Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res 99:375–384

    Article  PubMed  CAS  Google Scholar 

  33. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730–736

    Article  PubMed  CAS  Google Scholar 

  34. Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci U S A 109:14434–14439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Hickson GR, Echard A, O’Farrell PH (2006) Rho-kinase controls cell shape changes during cytokinesis. Curr Biol 16:359–370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Boucrot E, Kirchhausen T (2007) Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci U S A 104:7939–7944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  PubMed  CAS  Google Scholar 

  38. Barros LF, Kanaseki T, Sabirov R, Morishima S, Castro J, Bittner CX, Maeno E, Ando-Akatsuka Y, Okada Y (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10:687–697

    Article  PubMed  CAS  Google Scholar 

  39. Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  PubMed  CAS  Google Scholar 

  40. Albert DM, Miller JW, Azar DT, Blodi BA (2008) Pathology of the lens. Cataractogenesis in the Adult. In: Albert and Jakobiec’s Principles and Practice of Ophthalmology. Elsevier, Inc, Philadelphia, pp 272

  41. Yanoff M, Sassani JW (2009) Lens. Cortex and Nucleus. In: Yanoff M, Sassani JW (eds) Ocular Pathology, 7th edn. Mosby, Elsevier, St. Louis, p 361

    Google Scholar 

  42. Mousa GY, Creighton MO, Trevithick JR (1979) Eye lens opacity in cortical cataracts associated with actin-related globular degeneration. Exp Eye Res 29:379–391

    Article  PubMed  CAS  Google Scholar 

  43. Gilliland KO, Freel CD, Johnsen S, Craig Fowler W, Costello MJ (2004) Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts. Exp Eye Res 79:563–576

    Article  PubMed  CAS  Google Scholar 

  44. Moffat BA, Landman KA, Truscott RJ, Sweeney MH, Pope JM (1999) Age-related changes in the kinetics of water transport in normal human lenses. Exp Eye Res 69:663–669

    Article  PubMed  CAS  Google Scholar 

  45. Moffat BA, Pope JM (2002) Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging. Exp Eye Res 74:677–687

    Article  PubMed  CAS  Google Scholar 

  46. Andjelic S, Zupančič G, Hawlina M (2014) The effect of gentian violet on human anterior lens epithelial cells. Curr Eye Res 39:1020–1025

    Article  PubMed  Google Scholar 

  47. Dick HB, Aliyeva SE, Hengerer F (2008) Effect of trypan blue on the elasticity of the human anterior lens capsule. J Cataract Refract Surg 34:1367–1373

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Hawlina.

Ethics declarations

Funding

The Slovenian Research Agency (ARRS) provided financial support in the form of program P3-0333 funding.

The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andjelic, S., Drašlar, K., Hvala, A. et al. Anterior lens epithelium in intumescent white cataracts - scanning and transmission electron microscopy study. Graefes Arch Clin Exp Ophthalmol 254, 269–276 (2016). https://doi.org/10.1007/s00417-015-3220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3220-y

Keywords

Navigation