Skip to main content
Log in

Low concentrations of chloroquine and 3-methyladenine suppress the viability of retinoblastoma cells synergistically with vincristine independent of autophagy inhibition

  • Oncology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To study the inhibition of retinoblastoma cell viability by two commonly used autophagy inhibitors, chloroquine (CQ) and 3-methyladenine (3-MA), alone or in combination with the conventional chemotherapeutic drug vincristine (VCR), and to investigate whether the mechanisms of these drugs are related to inhibition of autophagy.

Methods

On retinoblastoma cell line HXO-Rb44, VCR, CQ and 3-MA were used individually or combined. The cell viability was determined by CCK8 method, and the cellular autophagic activity was determined by Western blotting of LC3 and p62. Caspase 3 fragmentation and Akt activation was also determined by Western blotting.

Results

VCR induced cell cycle arrest and apoptosis in HXO-Rb44 cells, but only inhibited autophagy at relatively high doses. Both CQ and 3-MA were synergistic with VCR to inhibit the growth of retinoblastoma cells and the combinational use significantly reduced the dosage of each drug. The lowest effective dose of CQ and 3-MA was most efficient to add on VCR; however, such dose was not sufficient to suppress autophagy in these cells. CQ could directly induce caspase activation, while 3-MA significantly inhibited Akt phosphorylation.

Conclusions

CQ and 3-MA were synergistic with VCR to inhibit retinoblastoma cells. Our result suggested a novel strategy to combine CQ or 3-MA with VCR to reduce the side effects of each drug. However, lack of change in the autophagic activity when using the two drugs at lower doses suggests multiple mechanisms of action of the same drug at different doses. At higher doses, the drugs could inhibit autophagy, while at lower doses, they suppress tumor growth via autophagy-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dimaras H, Kimani K, Dimba EA, Gronsdahl P, White A, Chan HS, Gallie BL (2012) Retinoblastoma. Lancet 379:1436–1446. doi:10.1016/S0140-6736(11)61137-9

    Article  PubMed  Google Scholar 

  2. Park SJ, Woo SJ, Park KH (2014) Incidence of retinoblastoma and survival rate of retinoblastoma patients in Korea using the Korean National Cancer Registry database (1993–2010). Invest Ophthalmol Vis Sci 55:2816–2821. doi:10.1167/iovs.14-14078

    Article  PubMed  Google Scholar 

  3. Gunduz K, Gunalp I, Yalcindag N, Unal E, Tacyildiz N, Erden E, Geyik PO (2004) Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation. Ophthalmology 111:1917–1924

    Article  PubMed  Google Scholar 

  4. Murphree AL, Villablanca JG, Deegan WF 3rd, Sato JK, Malogolowkin M, Fisher A, Parker R, Reed E, Gomer CJ (1996) Chemotherapy plus local treatment in the management of intraocular retinoblastoma. Arch Ophthalmol 114:1348–1356

    Article  CAS  PubMed  Google Scholar 

  5. Song X, Wang H, Jia R, Cun B, Zhao X, Zhou Y, Xu X, Qian G, Ge S, Fan X (2012) Combined treatment with an oncolytic adenovirus and antitumor activity of vincristine against retinoblastoma cells. Int J Mol Sci 13:10736–10749. doi:10.3390/ijms130910736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mitra M, Kandalam M, Sundaram CS, Verma RS, Maheswari UK, Swaminathan S, Krishnakumar S (2011) Reversal of stathmin-mediated microtubule destabilization sensitizes retinoblastoma cells to a low dose of antimicrotubule agents: a novel synergistic therapeutic intervention. Invest Ophthalmol Vis Sci 52:5441–5448. doi:10.1167/iovs.10-6973

    Article  CAS  PubMed  Google Scholar 

  7. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  8. Xu H, Wang C, Zhu H, Liu S, Xu X, Jiang Y (1995) Characteristics of an established retinoblastoma cell line HXO-Rb44. Yan Ke Xue Bao 11:16–21

    CAS  PubMed  Google Scholar 

  9. She JJ, Zhang PG, Che XM, Wang X, Wang ZM (2011) Side population cells from HXO-Rb44 retinoblastoma cell line have cancer-initiating property. Int J Ophthalmol 4:461–465. doi:10.3980/j.issn.2222-3959.2011.05.01

    PubMed Central  PubMed  Google Scholar 

  10. Cai JY, Tang JY, Pan C, Xu M, Xue HL, Zhou M, Dong L, Ye QD, Jiang H, Shen SH, Chen J (2010) Results of RS-99 protocol for childhood solid tumors. World J Pediatr 6:43–49

    Article  PubMed  Google Scholar 

  11. Groth-Pedersen L, Ostenfeld MS, Hoyer-Hansen M, Nylandsted J, Jaattela M (2007) Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res 67:2217–2225

    Article  CAS  PubMed  Google Scholar 

  12. Zhan Z, Li Q, Wu P, Ye Y, Tseng HY, Zhang L, Zhang XD (2012) Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy 8:109–121. doi:10.4161/auto.8.1.18319

    Article  CAS  PubMed  Google Scholar 

  13. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410. doi:10.1038/nrc3262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bruinink A, Zimmermann G, Riesen F (1991) Neurotoxic effects of chloroquine in vitro. Arch Toxicol 65:480–484

    Article  CAS  PubMed  Google Scholar 

  15. Maenpaa H, Toimela T, Mannerstrom M, Saransaari P, Tahti H (2004) Toxicity of selected cationic drugs in retinoblastomal cultures and in cocultures of retinoblastomal and retinal pigment epithelial cell lines. Neurochem Res 29:305–311

    Article  PubMed  Google Scholar 

  16. Browning DJ (2002) Hydroxychloroquine and chloroquine retinopathy: screening for drug toxicity. Am J Ophthalmol 133:649–656

    Article  CAS  PubMed  Google Scholar 

  17. Toimela T, Salminen L, Tahti H (1998) Effects of tamoxifen, toremifene and chloroquine on the lysosomal enzymes in cultured retinal pigment epithelial cells. Pharmacol Toxicol 83:246–251

    Article  CAS  PubMed  Google Scholar 

  18. Toimela T, Tahti H, Salminen L (1995) Retinal pigment epithelium cell culture as a model for evaluation of the toxicity of tamoxifen and chloroquine. Ophthalmic Res 27(Suppl 1):150–153

    Article  CAS  PubMed  Google Scholar 

  19. Sridevi P, Nhiayi MK, Setten RL, Wang JY (2013) Persistent inhibition of ABL tyrosine kinase causes enhanced apoptotic response to TRAIL and disrupts the pro-apoptotic effect of chloroquine. PLoS One 8:e77495. doi:10.1371/journal.pone.0077495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY (2010) Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 51:6030–6037. doi:10.1167/iovs.10-5278

    Article  PubMed  Google Scholar 

  21. Liu F, Shang Y, Chen SZ (2014) Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro. Acta Pharmacol Sin 35:645–652. doi:10.1038/aps.2014.3

    Article  CAS  PubMed  Google Scholar 

  22. Firat E, Weyerbrock A, Gaedicke S, Grosu AL, Niedermann G (2012) Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS One 7:e47357. doi:10.1371/journal.pone.0047357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Li M, Khambu B, Zhang H, Kang JH, Chen X, Chen D, Vollmer L, Liu PQ, Vogt A, Yin XM Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem 288:35769–35780

  24. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861. doi:10.1074/jbc.M109.080796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sheng Y, Sun B, Guo WT, Zhang YH, Liu X, Xing Y, Dong DL (2013) 3-Methyladenine induces cell death and its interaction with chemotherapeutic drugs is independent of autophagy. Biochem Biophys Res Commun 432:5–9. doi:10.1016/j.bbrc.2013.01.106

    Article  CAS  PubMed  Google Scholar 

  26. McFarland AJ, Anoopkumar-Dukie S, Perkins AV, Davey AK, Grant GD (2012) Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch Toxicol 86:275–284. doi:10.1007/s00204-011-0755-5

    Article  CAS  PubMed  Google Scholar 

  27. Cheng X, Liu H, Jiang CC, Fang L, Chen C, Zhang XD, Jiang ZW (2014) Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/beclin-1 in breast cancer cells. Int J Mol Med 34:772–781. doi:10.3892/ijmm.2014.1822

    CAS  PubMed  Google Scholar 

  28. Ito S, Koshikawa N, Mochizuki S, Takenaga K (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int J Oncol 31:261–268

    CAS  PubMed  Google Scholar 

  29. Hou H, Zhang Y, Huang Y, Yi Q, Lv L, Zhang T, Chen D, Hao Q, Shi Q (2012) Inhibitors of phosphatidylinositol 3′-kinases promote mitotic cell death in HeLa cells. PLoS One 7:e35665. doi:10.1371/journal.pone.0035665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Information on financial support

This research is financed by grants from National Science Foundation of China (81202021) and National Science Foundation of Zhejiang Province, China (LQ13H120001), and is supported by Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province.

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XY., Li, LJ., Li, W. et al. Low concentrations of chloroquine and 3-methyladenine suppress the viability of retinoblastoma cells synergistically with vincristine independent of autophagy inhibition. Graefes Arch Clin Exp Ophthalmol 253, 2309–2315 (2015). https://doi.org/10.1007/s00417-015-3157-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3157-1

Keywords

Navigation