Skip to main content

Functional and high-resolution retinal imaging monitoring photoreceptor damage in acute macular neuroretinopathy



To report functional and high-resolution retinal imaging abnormalities, including adaptive optics (AO) throughout the course of acute macular neuroretinopathy (AMNR).


Two female patients (four eyes) with a diagnosis of AMNR were observed at the Clinical Investigation Center, CHNO des Quinze-Vingts, Paris, France. The patients underwent detailed ophthalmic examination including best-corrected visual acuity, slit-lamp examination, kinetic and static perimetry, full-field and multifocal electroretinogram, infrared reflectance, autofluorescence imaging and spectral-domain optical coherence tomography (SD-OCT) and AO fundus imaging at presentation and during follow-up.


Both cases showed concomitant loss of integrity of the outer retinal structures on SD-OCT, and marked abnormalities on AO imaging with disruption of the visibility of the cone mosaic. In the first case, photoreceptor damage was seen to progress during several weeks before healing. In both cases, there were persistent morphological abnormalities of photoreceptors 1 year after onset.


This study further highlights the value of AO fundus imaging to facilitate detection, mapping, and monitoring of damage to the cone outer segments during AMNR. In particular, residual damage to the cone mosaic can be precisely documented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Bos PJ, Deutman AF (1975) Acute macular neuroretinopathy. Am J Ophthalmol 80(4):573–584

    CAS  Article  PubMed  Google Scholar 

  2. Turbeville SD, Cowan LD, Gass JD (2003) Acute macular neuroretinopathy: a review of the literature. Surv Ophthalmol 48(1):1–11

    Article  PubMed  Google Scholar 

  3. Amin P, Cox TA (1998) Acute macular neuroretinopathy. Arch Ophthalmol 116(1):112–113

    CAS  Article  PubMed  Google Scholar 

  4. Gandorfer A, Ulbig MW (2002) Scanning laser ophthalmoscope findings in acute macular neuroretinopathy. Am J Ophthalmol 133(3):413–415

    Article  PubMed  Google Scholar 

  5. Hughes EH, Siow YC, Hunyor AP (2009) Acute macular neuroretinopathy: anatomic localisation of the lesion with high-resolution OCT. Eye 23(11):2132–2134

    CAS  Article  PubMed  Google Scholar 

  6. Gomez-Torreiro M, Gomez-Ulla F, Bolivar Montesa P, Rodriguez-Cid MJ (2002) Scanning laser opthalmoscope findings in acute macular neuroretinopathy. Retina 22(1):108–109

    Article  PubMed  Google Scholar 

  7. Neuhann IM, Inhoffen W, Koerner S, Bartz-Schmidt KU, Gelisken F (2010) Visualization and follow-up of acute macular neuroretinopathy with the spectralis HRA+OCT device. Graefes Arch Clin Exp Ophthalmol 248(7):1041–1044

    Article  PubMed  Google Scholar 

  8. Kuznik-Borkowska A, Cohen SY, Broido-Hooreman O, Gaudric A (2006) Acute macular neuroretinopathy. J Fr Ophtalmol 29(3):319–322

    CAS  Article  PubMed  Google Scholar 

  9. Mirshahi A, Scharioth GB, Klais CM, Baatz H (2006) Enhanced visualization of acute macular neuroretinopathy by Heidelberg retina tomography. Clin Exp Ophthalmol 34(6):596–599

    Article  Google Scholar 

  10. Chan WM, Liu DT, Tong JP, Law RW, Lam DS (2005) Longitudinal findings of acute macular neuroretinopathy with multifocal electroretinogram and optical coherence tomography. Clin Exp Ophthalmol 33(4):439–442

    Article  Google Scholar 

  11. Monson BK, Greenberg PB, Greenberg E, Fujimoto JG, Srinivasan VJ, Duker JS (2007) High-speed, ultra-high-resolution optical coherence tomography of acute macular neuroretinopathy. Br J Ophthalmol 91(1):119–120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Maschi C, Schneider-Lise B, Paoli V, Gastaud P (2011) Acute macular neuroretinopathy: contribution of spectral-domain optical coherence tomography and multifocal ERG. Graefes Arch Clin Exp Ophthalmol 249(6):827–831

    Article  PubMed  Google Scholar 

  13. Vance SK, Spaide RF, Freund KB, Wiznia R, Cooney MJ (2011) Outer retinal abnormalities in acute macular neuroretinopathy. Retina 31(3):441–445

    Article  PubMed  Google Scholar 

  14. Yeh S, Hwang TS, Weleber RG, Watzke RC, Francis PJ (2011) Acute macular outer retinopathy (AMOR): a reappraisal of acute macular neuroretinopathy using multimodality diagnostic testing. Arch Ophthalmol 129(3):365–368

    Article  PubMed  Google Scholar 

  15. Baumuller S, Holz FG (2012) Early spectral-domain optical coherence tomography findings in acute macular neuroretinopathy. Retina 32(2):409–410

    Article  PubMed  Google Scholar 

  16. Azar G, Wolff B, Cornut PL, Sahel JA, Mauget-Faysse M (2012) Spectral domain optical coherence tomography evolutive features in acute macular neuroretinopathy. Eur J Ophthalmol 22(5):850–852

    PubMed  Google Scholar 

  17. Sieving PA, Fishman GA, Salzano T, Rabb MF (1984) Acute macular neuroretinopathy: early receptor potential change suggests photoreceptor pathology. Br J Ophthalmol 68(4):229–234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Browning AC, Gupta R, Barber C, Lim CS, Amoaku WM (2003) The multifocal electroretinogram in acute macular neuroretinopathy. Arch Ophthalmol 121(10):1506–1507

    Article  PubMed  Google Scholar 

  19. Corver HD, Ruys J, Kestelyn-Stevens AM, De Laey JJ, Leroy BP (2007) Two cases of acute macular neuroretinopathy. Eye 21(9):1226–1229

    CAS  Article  PubMed  Google Scholar 

  20. Maturi RK, Yu M, Sprunger DT (2003) Multifocal electroretinographic evaluation of acute macular neuroretinopathy. Arch Ophthalmol 121(7):1068–1069

    Article  PubMed  Google Scholar 

  21. Munch IC, Traustason S, Olgaard K, Larsen M (2012) Acute macular neuroretinopathy in relation to anti-thymocyte globulin infusion. Acta Ophthalmol 90(4):e321–e322

    Article  PubMed  Google Scholar 

  22. Miller MH, Spalton DJ, Fitzke FW, Bird AC (1989) Acute macular neuroretinopathy. Ophthalmology 96(2):265–269

    CAS  Article  PubMed  Google Scholar 

  23. O'Brien DM, Farmer SG, Kalina RE, Leon JA (1989) Acute macular neuroretinopathy following intravenous sympathomimetics. Retina 9(4):281–286

    Article  PubMed  Google Scholar 

  24. Desai UR, Sudhamathi K, Natarajan S (1993) Intravenous epinephrine and acute macular neuroretinopathy. Arch Ophthalmol 111(8):1026–1027

    CAS  Article  PubMed  Google Scholar 

  25. Leys M, Van Slycken S, Koller J, Van de Sompel W (1991) Acute macular neuroretinopathy after shock. Bull Soc Belge Ophtalmol 241:95–104

    CAS  PubMed  Google Scholar 

  26. Stilma JS, de Lange JJ, Crezee FC (1987) Bilateral central scotoma with preservation of central vision in 2 patients following caesarean section under spinal anesthesia. Doc Ophthalmol Adv Ophthalmol 67(1–2):59–68

    CAS  Article  Google Scholar 

  27. Guzak SV, Kalina RE, Chenoweth RG (1983) Acute macular neuroretinopathy following adverse reaction to intravenous contrast media. Retina 3(4):312–317

    CAS  Article  PubMed  Google Scholar 

  28. Sarraf D, Rahimy E, Fawzi AA, Sohn E, Barbazetto I, Zacks DN, Mittra RA, Klancnik JM Jr, Mrejen S, Goldberg NR, Beardsley R, Sorenson JA, Freund KB (2013) Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol 131(10):1275–1287

    Article  PubMed  Google Scholar 

  29. Hirooka K, Saito W, Noda K, Ishida S (2014) Enhanced-depth imaging optical coherence tomography and laser speckle flowgraphy in a patient with acute macular neuroretinopathy. Ocul Immunol Inflamm 22(6):485–489

    Article  PubMed  Google Scholar 

  30. Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14(11):2884–2892

    CAS  Article  PubMed  Google Scholar 

  31. Pallikaris A, Williams DR, Hofer H (2003) The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci 44(10):4580–4592

    Article  PubMed  Google Scholar 

  32. Roorda A (2000) Adaptive optics ophthalmoscopy. J Refract Surg 16(5):S602–S607

    CAS  PubMed  Google Scholar 

  33. Chui TY, Song H, Burns SA (2008) Adaptive-optics imaging of human cone photoreceptor distribution. J Opt Soc Am A Opt Image Sci Vis 25(12):3021–3029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol Adv Ophthalmol 116(1):1–11

    Article  Google Scholar 

  35. Loquin KBI, Nakashima K, Rossant F, Boelle P-Y, Paques M (2011) Photoreceptor detection in in-vivo adaptive optics images of the retina: towards a simple interactive tool for the physicians. IEEE International Symposium on Biomedical Imaging (ISBI), Chicago, pp 191–194

    Google Scholar 

  36. Hansen SO, Cooper RF, Dubra A, Carroll J, Weinberg DV (2013) Selective cone photoreceptor injury in acute macular neuroretinopathy. Retina 33(8):1650–1658

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mrejen S, Pang CE, Sarraf D, Goldberg NR, Gallego-Pinazo R, Klancnik JM, Sorenson JA, Yannuzzi LA, Freund KB (2014) Adaptive optics imaging of cone mosaic abnormalities in acute macular neuroretinopathy. Ophthalmic Surg Lasers Imaging Retina 45(6):562–569

    Article  PubMed  Google Scholar 

  38. Fawzi AA, Pappuru RR, Sarraf D, Le PP, McCannel CA, Sobrin L, Goldstein DA, Honowitz S, Walsh AC, Sadda SR, Jampol LM, Eliott D (2012) Acute macular neuroretinopathy: long-term insights revealed by multimodal imaging. Retina 32(8):1500–1513

    Article  PubMed  Google Scholar 

  39. Feigl B, Haas A (2000) Optical coherence tomography (OCT) in acute macular neuroretinopathy. Acta Ophthalmol Scand 78(6):714–716

    CAS  Article  PubMed  Google Scholar 

  40. Gass JD, Hamed LM (1989) Acute macular neuroretinopathy and multiple evanescent white dot syndrome occurring in the same patients. Arch Ophthalmol 107(2):189–193

    CAS  Article  PubMed  Google Scholar 

Download references


The authors are grateful to patients reported in this study, to the staff from Imagine Eyes for their technical support, and to the orthoptists, nurses, and study coordinators from the CIC503, as well as to the librarian of Quinze-Vingts hospital for her assistance with reference articles.

None of the co-authors have a commercial relationship in relation associated with the data presented in this study.

The project was financially supported by the ANR TecSan 09–09 iPhot and Foundation Fighting Blindness (FFB FFB center grant C-GE-0912-0601-INSERM02), and by IA FFB grant N°: CD-CL-0808-0466-CHNO).

Conflict of interest statement

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Isabelle Audo.

Additional information

Isabelle Audo and Kiyoko Gocho contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure

Outer nuclear layer mapping for case 1 at presentation and 9 months and case 2 at 9 and 18 months after onset revealed ONL thinning. (PDF 1592 kb)

Supplementary material

video showing close-up follow-up adaptive optics images of Fig. 4 from the left eye for Case 1, taken from the 2° nasal 2° superior from the foveal center, shows similar pattern of abnormalities as for the right eye, i.e., sharp hyporeflective lesion at presentation, increased in lesion size then decrease with persistent abnormalities at M12 and patchy hyper reflective dots. Scale bar shows 100 μm. (GIF 2924 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Audo, I., Gocho, K., Rossant, F. et al. Functional and high-resolution retinal imaging monitoring photoreceptor damage in acute macular neuroretinopathy. Graefes Arch Clin Exp Ophthalmol 254, 855–864 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Acute macular neuroretinopathy
  • Multimodal retinal imaging
  • High-resolution retinal imaging
  • SD-OCT
  • Adaptive optics