Skip to main content
Log in

Spatial and temporal analyses of posture in strabismic children

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyse postural performances of strabismic children, both in the spatial and the temporal domains, by wavelet transformation, comparing both stable and unstable situations.

Methods

Twenty-six strabismic children aged from 4 to 11 years old and 26 age-matched normal children participated in the study. Postural performances were evaluated using the Framiral® platform. Posture was recorded in the following conditions: eyes open fixating a target and eyes closed on stable and unstable platforms.

Results

For both strabismic and non-strabismic children, the surface and the mean velocity of the center of pressure (CoP) were significantly larger in the eyes closed on unstable platform condition, but this was much more pronounced in case of strabismus. Spectral power index and cancelling time were also found to be altered in strabismic children compared to non-strabismic children.

Conclusions

This data demonstrates poor postural stability for both groups on an unstable platform with the eyes closed. However, strabismic children had significantly worse performance than non-strabismic children. Strabismic children also engage more energy to stabilize their posture by using visuo-vestibular sensory inputs to compensate their altered vision due to strabismus, in comparison to non-strabismic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, New York

    Google Scholar 

  2. Massion J (1994) Postural control system. Curr Opin Neurobiol 4:877–887

    Article  CAS  PubMed  Google Scholar 

  3. Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions--a conceptual model. Brain Res Brain Res Rev 28:118–135

    Article  CAS  PubMed  Google Scholar 

  4. Brandt T (2003) Vertigo: its multisensory syndromes. Springer, New York

    Book  Google Scholar 

  5. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    CAS  PubMed  Google Scholar 

  6. Mergner T, Maurer C, Peterka RJ (2002) Sensory contributions to the control of stance: a posture control model. Adv Exp Med Biol 508:147–152

    Article  PubMed  Google Scholar 

  7. Bernard-Demanze L, Burdet C, Berger L, Rougier P (2004) Recalibration of somesthetic plantar information in the control of undisturbed upright stance maintenance. J Integr Neurosci 3:433–451

    Article  CAS  PubMed  Google Scholar 

  8. Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory reweighting. Biol Cybern 95:123–134. doi:10.1007/s00422-006-0069-5

    Article  PubMed  Google Scholar 

  9. Williams C, Northstone K, Howard M et al (2008) Prevalence and risk factors for common vision problems in children: data from the ALSPAC study. Br J Ophthalmol 92:959–964. doi:10.1136/bjo.2007.134700

    Article  CAS  PubMed  Google Scholar 

  10. Odenrick P, Sandstedt P, Lennerstrand G (1984) Postural sway and gait of children with convergent strabismus. Dev Med Child Neurol 26:495–499

    Article  CAS  PubMed  Google Scholar 

  11. Matsuo T, Narita A, Senda M et al (2006) Body sway increases immediately after strabismus surgery. Acta Med Okayama 60:13

    PubMed  Google Scholar 

  12. Matsuo T, Yabuki A, Hasebe K et al (2010) Postural stability changes during the prism adaptation test in patients with intermittent and constant exotropia. Invest Ophthalmol Vis Sci 51:6341–6347

    Article  PubMed  Google Scholar 

  13. Legrand A, Quoc EB, Vacher SW et al (2011) Postural control in children with strabismus: Effect of eye surgery. Neurosci Lett 501:96–101. doi:10.1016/j.neulet.2011.06.056

    Article  CAS  PubMed  Google Scholar 

  14. Lions C, Bui-Quoc E, Bucci MP (2013) Postural control in strabismic children versus non strabismic age-matched children. Graefes Arch Klin Exp Ophthalmol 251:2219–2225. doi:10.1007/s00417-013-2372-x

    Article  Google Scholar 

  15. Lions C, Bui Quoc E, Wiener-Vacher S, Bucci MP (2014) Postural control in strabismic children: importance of proprioceptive information. Integr Physiol 5:156. doi:10.3389/fphys.2014.00156

    Google Scholar 

  16. Ghulyan V, Paolino M, Lopez C et al (2005) A new translational platform for evaluating aging or pathology-related postural disorders. Acta Otolaryngol (Stockh) 125:607–617. doi:10.1080/00016480510026908

    Article  Google Scholar 

  17. Lacour M, Bernard-Demanze L, Dumitrescu M (2008) Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin Neurophysiol 38:411–421. doi:10.1016/j.neucli.2008.09.005

    Article  CAS  Google Scholar 

  18. Yelnik A, Bonan I (2008) Clinical tools for assessing balance disorders. Neurophysiol Clin Clin Neurophysiol 38:439–445. doi:10.1016/j.neucli.2008.09.008

    Article  CAS  Google Scholar 

  19. Bernard-Demanze L, Dumitrescu M, Jimeno P et al (2009) Age-related changes in posture control are differentially affected by postural and cognitive task complexity. Curr Aging Sci 2:139–149

    Article  CAS  PubMed  Google Scholar 

  20. Gouleme N, Gerard CL, Bui-Quoc E, Bucci MP (2014) Spatial and temporal analysis of postural control in dyslexic children. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. doi:10.1016/j.clinph.2014.10.016

    Google Scholar 

  21. Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech Bristol Avon 17:666–677

    Article  Google Scholar 

  22. Maki BE, Holliday PJ, Fernie GR (1990) Aging and postural control. A comparison of spontaneous- and induced-sway balance tests. J Am Geriatr Soc 38:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Geurts AC, Nienhuis B, Mulder TW (1993) Intrasubject variability of selected force-platform parameters in the quantification of postural control. Arch Phys Med Rehabil 74:1144–1150

    CAS  PubMed  Google Scholar 

  24. Dumitrescu M, Lacour M (2004) Analyse mathématique par décomposition en ondelettes des signaux stabilométriques. Avantages par rapport à l’approche classique de la FFT. Nouvelles méthodes de traitement du signal posturographique, Michel Lacour. Solal Editeur, Marseille

    Google Scholar 

  25. Nashner LM (1979) Organization and programming of motor activity during posture control. Prog Brain Res 50:177–184. doi:10.1016/S0079-6123(08)60818-3

    Article  CAS  PubMed  Google Scholar 

  26. Kohen-Raz R, Himmelfarb M, Tzur S et al (1996) An initial evaluation of work fatigue and circadian changes as assessed by multiplate posturography. Percept Mot Skills 82:547–557

    Article  CAS  PubMed  Google Scholar 

  27. Paillard T, Costes-Salon C, Lafont C, Dupui P (2002) Are there differences in postural regulation according to the level of competition in judoists? Br J Sports Med 36:304–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515. doi:10.1007/BF00229365

    Article  CAS  PubMed  Google Scholar 

  29. Shumway-Cook A, Woollacott MH (1985) The growth of stability: postural control from a development perspective. J Mot Behav 17:131–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fondation Cotrel / Institut de France for their financial support.

Cynthia Lions was supported by the Société Francophone de Posture, Equilibre et Locomotion (SOFPEL). The authors thank the parents and children involved in the study for their kind participation, Dr. Liza Vera and Dr. Alexandra Gavard for conducting ophthalmology examinations of the strabismic children, Ms. Nathalie Semsoum for the management of the children’s appointments and Chloe Barker for revising the English version of the manuscript.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Lions.

Additional information

Marie-Désirée Ezane and Cynthia Lions contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezane, MD., Lions, C., Bui Quoc, E. et al. Spatial and temporal analyses of posture in strabismic children. Graefes Arch Clin Exp Ophthalmol 253, 1629–1639 (2015). https://doi.org/10.1007/s00417-015-3134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3134-8

Keywords

Navigation