Skip to main content
Log in

Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal–transretinal stimulation prosthesis in middle-sized animals

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the safety and efficacy of a newly-developed wide-field dual-array suprachoroidal–transretinal stimulation (STS) prosthesis in middle-sized animals.

Methods

The prosthesis consisted of two arrays with 50 to 74 electrodes. To test the feasibility of implanting the prosthesis and its efficacy, the prosthesis was implanted for 14 days into two rabbits. Optical coherence tomography (OCT) and ophthalmoscopy were performed 7 and 14 days after the implantation. Then the rabbits were euthanized, eyes were enucleated, and the posterior segment of the eye was examined histologically. In a second experiment, the arrays were implanted into two cats, and their ability to elicit neural responses was determined by electrically evoked potentials (EEPs) at the chiasm and by optical imaging of the retina.

Results

All arrays were successfully implanted, and no major complications occurred during the surgery or during the 2-week postoperative period. Neither OCT nor ophthalmoscopy showed any major complications or instability of the arrays. Histological evaluations showed only mild cellular infiltration and overall good retinal preservation. Stimulation of the retina by the arrays evoked EEPs recorded from the chiasm. Retinal imaging showed that the electrical pulses from the arrays altered the retinal images indicating an activation of retinal neurons. The thresholds were as low as 100 μA for a chiasm response and 300 μA for the retinal imaging.

Conclusion

Implantation of a newly-developed dual-array STS prosthesis for 2 weeks in rabbits was feasible surgically, and safe. The results of retinal imaging showed that the dual-array system was able to activate retinal neurons. We conclude that the dual-array design can be implanted without complication and is able to activate retinal neurons and optic nerve axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17(2):175–205

    Article  CAS  PubMed  Google Scholar 

  2. Santos A, Humayun MS, De Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515

    Article  CAS  PubMed  Google Scholar 

  3. Stone JL, Barlow WE, Humayun MS, De Juan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110(11):1634–1639

    Article  CAS  PubMed  Google Scholar 

  4. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809. doi:10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  5. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. doi:10.1186/1750-1172-1-40

    Article  PubMed  PubMed Central  Google Scholar 

  6. Musarella MA, Macdonald IM (2011) Current concepts in the treatment of retinitis pigmentosa. J Ophthalmol 2011:753547. doi:10.1155/2011/753547

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal–transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245(10):1411–1419. doi:10.1007/s00417-007-0563-z

    Article  PubMed  Google Scholar 

  8. Humayun MS, De Juan E Jr, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114(1):40–46

    Article  CAS  PubMed  Google Scholar 

  9. Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361

    Article  PubMed  Google Scholar 

  10. Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Koch C, Krisch I, Sellhaus B, Trieu HK, Weis J, Bornfeld N, Rothgen H, Messner A, Mokwa W, Walter P (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50(6):3003–3008. doi:10.1167/iovs.08-2752

    Article  PubMed  Google Scholar 

  11. Stronks HC, Dagnelie G (2014) The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices 11(1):23–30. doi:10.1586/17434440.2014.862494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, Chen FK, Wuyyuru V, Sahel J, Stanga P, Humayun M, Greenberg RJ, Dagnelie G, Argus IISG (2013) The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 97(5):632–636. doi:10.1136/bjophthalmol-2012-301525

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hortdorfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280(1757), 20130077. doi:10.1098/rspb.2013.0077

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rizzo JF 3rd, Shire DB, Kelly SK, Troyk P, Gingerich M, McKee B, Priplata A, Chen J, Drohan W, Doyle P, Mendoza O, Theogarajan L, Cogan S, Wyatt JL (2011) Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind. Conf Proc IEEE Eng Med Biol Soc 2011:7492–7495. doi:10.1109/IEMBS.2011.6093610

    PubMed  Google Scholar 

  15. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469. doi:10.1001/archopht.122.4.460

    Article  PubMed  Google Scholar 

  16. Morimoto T, Kamei M, Nishida K, Sakaguchi H, Kanda H, Ikuno Y, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K, Fujikado T (2011) Chronic implantation of newly developed suprachoroidal–transretinal stimulation prosthesis in dogs. Invest Ophthalmol Vis Sci 52(9):6785–6792. doi:10.1167/iovs.10-6971

    Article  PubMed  Google Scholar 

  17. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K (2011) Testing of semichronically implanted retinal prosthesis by suprachoroidal–transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(7):4726–4733. doi:10.1167/iovs.10-6836

    Article  PubMed  Google Scholar 

  18. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Nishida K, Kishima H, Maruo T, Oosawa K, Ozawa M, Nishida K (2013) Feasibility of 2nd generation STS retinal prosthesis in dogs. Conf Proc IEEE Eng Med Biol Soc 2013:3119–3121. doi:10.1109/embc.2013.6610201

    CAS  PubMed  Google Scholar 

  19. Villalobos J, Nayagam DA, Allen PJ, McKelvie P, Luu CD, Ayton LN, Freemantle AL, McPhedran M, Basa M, McGowan CC, Shepherd RK, Williams CE (2013) A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci 54(5):3751–3762. doi:10.1167/iovs.12-10843

    Article  PubMed  Google Scholar 

  20. Brelen ME, Duret F, Gerard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2(1):S22–S28. doi:10.1088/1741-2560/2/1/004

    Article  CAS  PubMed  Google Scholar 

  21. Delbeke J, Wanet-Defalque MC, Gerard B, Troosters M, Michaux G, Veraart C (2002) The microsystems based visual prosthesis for optic nerve stimulation. Artif Organs 26(3):232–234

    Article  PubMed  Google Scholar 

  22. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243(2):553–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt 2):507–522

    Article  PubMed  Google Scholar 

  24. Guenther T, Lovell NH, Suaning GJ (2012) Bionic vision: system architectures: a review. Expert Rev Med Devices 9(1):33–48. doi:10.1586/ERD.11.58

    Article  PubMed  Google Scholar 

  25. Chuang AT, Margo CE, Greenberg PB (2014) Retinal implants: a systematic review. Br J Ophthalmol 98(7):852–856. doi:10.1136/bjophthalmol-2013-303708

    Article  PubMed  Google Scholar 

  26. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies of the feasibility of suprachoroidal–transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci 45(2):560–566

    Article  PubMed  Google Scholar 

  27. Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, Shepherd RK, Williams CE (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng 9(3):036009. doi:10.1088/1741-2560/9/3/036009

    Article  PubMed  Google Scholar 

  28. Nayagam DA, Williams RA, Allen PJ, Shivdasani MN, Luu CD, Salinas-LaRosa CM, Finch S, Ayton LN, Saunders AL, McPhedran M, McGowan C, Villalobos J, Fallon JB, Wise AK, Yeoh J, Xu J, Feng H, Millard R, McWade M, Thien PC, Williams CE, Shepherd RK (2014) Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. PLoS One 9(5), e97182. doi:10.1371/journal.pone.0097182

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marron JA, Bailey IL (1982) Visual factors and orientation–mobility performance. Am J Optom Physiol Opt 59(5):413–426

    Article  CAS  PubMed  Google Scholar 

  30. Geruschat DR, Turano KA, Stahl JW (1998) Traditional measures of mobility performance and retinitis pigmentosa. Optom Vis Sci 75(7):525–537

    Article  CAS  PubMed  Google Scholar 

  31. Turano KA, Broman AT, Bandeen-Roche K, Munoz B, Rubin GS, West S (2004) Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optom Vis Sci 81(5):298–307

    Article  PubMed  Google Scholar 

  32. Szlyk JP, Seiple W, Fishman GA, Alexander KR, Grover S, Mahler CL (2001) Perceived and actual performance of daily tasks: relationship to visual function tests in individuals with retinitis pigmentosa. Ophthalmology 108(1):65–75

    Article  CAS  PubMed  Google Scholar 

  33. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278(1711):1489–1497. doi:10.1098/rspb.2010.1747

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayes JS, Yin VT, Piyathaisere D, Weiland JD, Humayun MS, Dagnelie G (2003) Visually guided performance of simple tasks using simulated prosthetic vision. Artif Organs 27(11):1016–1028

    Article  PubMed  Google Scholar 

  35. Nayagam DA, McGowan C, Villalobos J, Williams RA, Salinas-LaRosa C, McKelvie P, Lo I, Basa M, Tan J, Williams CE (2013) Techniques for processing eyes implanted with a retinal prosthesis for localized histopathological analysis. J Vis Exp 78. doi:10.3791/50411

  36. Okawa Y, Fujikado T, Miyoshi T, Sawai H, Kusaka S, Mihashi T, Hirohara Y, Tano Y (2007) Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal–transretinal stimulation. Invest Ophthalmol Vis Sci 48(10):4777–4784. doi:10.1167/iovs.07-0209

    Article  PubMed  Google Scholar 

  37. Kanda H, Mihashi T, Miyoshi T, Hirohara Y, Morimoto T, Terasawa Y, Fujikado T (2014) Evaluation of electrochemically treated bulk electrodes for a retinal prosthesis by examination of retinal intrinsic signals in cats. Jpn J Ophthalmol 58(4):309–319. doi:10.1007/s10384-014-0319-3

    Article  PubMed  Google Scholar 

  38. Hirohara Y, Mihashi T, Kanda H, Morimoto T, Miyoshi T, Wolffsohn JS, Fujikado T (2013) Optical imaging of retina in response to grating stimuli in cats. Exp Eye Res 109:1–7. doi:10.1016/j.exer.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  39. Inomata K, Tsunoda K, Hanazono G, Kazato Y, Shinoda K, Yuzawa M, Tanifuji M, Miyake Y (2008) Distribution of retinal responses evoked by transscleral electrical stimulation detected by intrinsic signal imaging in macaque monkeys. Invest Ophthalmol Vis Sci 49(5):2193–2200. doi:10.1167/iovs.07-0727

    Article  PubMed  Google Scholar 

  40. Villalobos J, Allen PJ, McCombe MF, Ulaganathan M, Zamir E, Ng DC, Shepherd RK, Williams CE (2012) Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma. Graefes Arch Clin Exp Ophthalmol 250(3):399–407. doi:10.1007/s00417-011-1794-6

    Article  PubMed  Google Scholar 

  41. Villalobos J, Fallon JB, Nayagam DA, Shivdasani MN, Luu CD, Allen PJ, Shepherd RK, Williams CE (2014) Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis. J Neural Eng 11(4):046017. doi:10.1088/1741-2560/11/4/046017

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Vision Institution of the Nidek Co., Ltd., Japan, for their help and contribution.

The authors (TKL, TM, TE, TM, KN, MK, PW) certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

HK and TF have grant/research support from NIDEK Company

Supported by the Translational Research Network Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. and by Asian CORE Program, Japan Society for the Promotion of Science (JSPS)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Fujikado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohmann, T.K., Kanda, H., Morimoto, T. et al. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal–transretinal stimulation prosthesis in middle-sized animals. Graefes Arch Clin Exp Ophthalmol 254, 661–673 (2016). https://doi.org/10.1007/s00417-015-3104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3104-1

Keywords

Navigation