Skip to main content

Advertisement

Log in

Effects of CD25siRNA gene transfer on high-risk rat corneal graft rejection

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Corneal graft rejection is the major cause of corneal failures. Previous studies have shown that the CD25 monoclonal antibody can inhibit corneal graft rejection during the acute phase of rejection in rat models. In the current study, we evaluated the safety and efficacy of the topical Entranster™ vector in rat corneal applications and further investigated the effects of CD25siRNA gene transfer on high-risk rat corneal graft rejection.

Methods

Fluorescence detection, clinical assessment, hematoxylin and eosin (HE), terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) and CD11b assays were used to evaluate the safety and efficacy of CD25siRNA gene transfer in normal SD rat corneas. Orthotopic corneal transplants were performed in alkali burned SD rats. Corneal recipients were divided into four groups that received different treatments. Clinical assessment, western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, HE and transmission electron microscopy (TEM) were performed on all grafts.

Results

Low toxicity, no immunogenicity and high transfection efficiency were observed in rat corneas treated with the Entranster™ vector. Reduced endothelial cell apoptosis, inflammatory cell infiltration and graft neovascularisation were observed in the CD25siRNA treatment groups. The graft survival curves showed that CD25siRNA treatment significantly prolonged graft survival time, with better graft transparency and less graft oedema. Lower CD25 and higher IL-10 expression were detected in the CD25siRNA treatment groups during the study period, and a higher FOXP3 level was found in the CD25siRNA group than in the CD25siRNA-twice group on days 14 and 21 post-operation.

Conclusions

The Entranster™ vector is an effective vector for corneal gene therapy. CD25 siRNA gene transfer inhibits corneal graft rejection via upregulation of anti-inflammatory molecule expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yuan XB, Yuan YB, Jiang W, Liu J, Tian EJ, Shun HM, Huang DH, Yuan XY, Li H, Sheng J (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248

    Article  CAS  PubMed  Google Scholar 

  2. Coster DJ, Williams KA (2005) The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Opthalmol 140:1112–1122

    Article  Google Scholar 

  3. Vail A, Gore SM, Bradley BA, Easty DL, Rogers CA, Armitage WJ (1997) Conclusions of the corneal transplant follow up study. Collaborating surgeons. Br J Ophthalmol 81:631–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ (2006) How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation 81:896–901

    Article  PubMed  Google Scholar 

  5. Xiao H, Zhang H, Yu ZY, Zhang L, Yu M, Huang YF, Li S, Shen BF, Li Y (2007) J2 prolongs the corneal allograft survival through inhibition of the CD4 + T cell-mediated response in vivo. Transpl Immunol 18:130–137

    Article  CAS  PubMed  Google Scholar 

  6. Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X (2012) Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 102:44–49

    Article  CAS  PubMed  Google Scholar 

  7. Holland EJ, Chan CC, Wetzig RP, Palestine AG, Nussenblatt RB (1991) Clinical and immunohistologic studies of corneal rejection in the rat penetrating keratoplasty model. Cornea 10:374–380

    Article  CAS  PubMed  Google Scholar 

  8. Létourneau S, Krieg C, Pantaleo G, Boyman O (2009) IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol 123:758–762

    Article  PubMed  Google Scholar 

  9. Nashan B, Schwinzer R, Schlitt HJ, Wonigeit K, Pichlmayr R (1995) Immunological effects of the anti-lL-2 receptor monoclonal antibody BT 563 in liver allografted patients. Transpl Immunol 3:203–211

    Article  CAS  PubMed  Google Scholar 

  10. Cheikhelard A, Go S, Canioni D, Leborgne M, Brousse N, Révillon Y, Cerf-Bensussan N, Sarnacki S (2005) Enhanced in situ expression of NF-kappaBp65 is an early marker of intestinal graft rejection in rats. J Pediatr Surg 40:1420–1427

    Article  PubMed  Google Scholar 

  11. Jirasiritham S, Sumethkul V, Mavichak V, Lertsithichai P, Jirasiritham S (2004) The role of anti-IL-2 receptor in high-risk kidney transplant patients. Transplantation 36:2110–2112

    CAS  Google Scholar 

  12. Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S, Tencomnao T, Puttipipatkhachorn S (2012) The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 90:1323–1329

    Article  CAS  PubMed  Google Scholar 

  13. Huh MS, Lee SY, Park S, Lee S, Chung H, Lee S, Choi Y, Oh YK, Park JH, Jeong SY, Choi K, Kim K, Kwon IC (2010) Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release 144:134–143

    Article  CAS  PubMed  Google Scholar 

  14. Fattal E, Bochot A (2006) Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 58:1203–1223

    Article  CAS  PubMed  Google Scholar 

  15. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sharma A, Tandon A, Tovey JC, Gupta R, Robertson JD, Fortune JA, Klibanov AM, Cowden JW, Rieger FG, Mohan RR (2011) Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomedicine 7:505–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jiang Z, Chen CH, Chen YY, Han JY, Riley J, Zhou CM (2014) Autophagic effect of programmed cell death 5 (PDCD5) after focal cerebral ischemic reperfusion injury in rats. Neurosci Lett 566:298–303

    Article  CAS  PubMed  Google Scholar 

  18. He F, Yao H, Xiao Z, Han J, Zou J, Liu Z (2014) Inhibition of IL-2 inducible T-cell kinase alleviates T-cell activation and murine myocardial inflammation associated with CVB3 infection. Mol Immunol 59:30–38

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Zhang L, Wu J, Di C, Xia Z (2013) Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response. J Biol Chem 288:34612–34626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Peng L, Song M, Wu Q, Li G, Liang S (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jie Y, Pan Z, Chen Y, Wei Y, Zhang W, Xu L, Wu Y, Peng H (2004) SEB combined with IL-1ra could prolong the survival of the rat allografts in high-risk corneal transplantation. Transplant Proc 36:3267–3271

    Article  CAS  PubMed  Google Scholar 

  22. Monaghan M, Pandit A (2011) RNA interference therapy via functionalized scaffolds. Adv Drug Deliv Rev 63:197–208

    Article  CAS  PubMed  Google Scholar 

  23. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Armitage WJ, Easty DL (1997) Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophthalmol Vis Sci 38:16–24

    CAS  PubMed  Google Scholar 

  25. Hu J, Kovtun A, Tomaszewski A, Singer BB, Seitz B, Epple M, Steuhl KP, Ergun S, Fuchsluger TA (2012) A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles. Acta Biomater 8:1156–1163

    Article  CAS  PubMed  Google Scholar 

  26. Niederkorn JY (1999) The immune privilege of corneal allografts. Transplantation 67:1503–1508

    Article  CAS  PubMed  Google Scholar 

  27. Hsu CC, Chang HM, Lin TC, Hung KH, Chien KH, Chen SY, Chen SN, Chen YT (2015) Corneal neovascularization and contemporary antiangiogenic therapeutics. J Chin Med Assoc. doi:10.1016/j.jcma.2014.10.002

    Google Scholar 

  28. Cheung KW, Sze DM, Chan WK, Deng RX, Tu W, Chan GC (2011) Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. J Ethnopharmacol 138:463–471

    Article  CAS  PubMed  Google Scholar 

  29. Hire K, Ngo DK, Stewart-Maynard KM, Hering B, Bansal-Pakala P (2012) FoxP3+, and not CD25+, T cells increase post-transplant in islet allotransplant recipients following anti-CD25+ rATG immunotherapy. Cell Immunol 274:83–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the National Natural Science Foundation of China (81170822).

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Shi, Y., Zhao, Q. et al. Effects of CD25siRNA gene transfer on high-risk rat corneal graft rejection. Graefes Arch Clin Exp Ophthalmol 253, 1765–1776 (2015). https://doi.org/10.1007/s00417-015-3067-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3067-2

Keywords

Navigation