Skip to main content

Advertisement

Log in

Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Suprachoroidal-transretinal stimulation (STS) can potentially restore vision. This study investigated the spatial characteristics of cortical electrical evoked potentials (EEPs) elicited by STS.

Methods

A 4 × 4 thin-film platinum microelectrode stimulating array (200 μm electrode diameter and 400 μm center-to-center distance) was fabricated by a micro-electro-mechanical systems (MEMS) techniques and implanted into the suprachoroidal space of albino rabbits.

Results

The current threshold to elicit reliable EEPs by a single electrode was 41.6 ± 12.6 μA, corresponding to a 66.2 ± 20.1 μC · cm−2 charge density per phase, which was lower than the reported safety limits. Spatially differentiated cortical responses could be evoked by STS through different rows or columns of electrical stimulation; furthermore, shifts in the location of the maximum cortical activities were consistent with cortical visuotopic maps; increasing the number of simultaneously stimulating electrodes increased the response amplitudes of EEPs and expanded the spatial spread as well. In addition, long-term implantation and electrical stimulation of the MEMS electrode array in suprachoroidal space are necessary to evaluate systematically the safety and biocompatibility of this approach.

Conclusions

This study indicates that the STS approach by a MEMS-based platinum electrode array is a feasible alternative for visual restoration, and relatively high spatial discrimination may be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Humayun MS, de Juan JE, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46

    Article  CAS  PubMed  Google Scholar 

  2. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  CAS  PubMed  Google Scholar 

  3. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289

    Article  CAS  PubMed  Google Scholar 

  4. Rizzo Iii JF, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3:251–262

    Article  Google Scholar 

  5. Zrenner E, Miliczek KD, Gabel V, Graf H, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280

    Article  CAS  PubMed  Google Scholar 

  6. Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y (2005) Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243:169–174

    Article  PubMed  Google Scholar 

  7. Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245:1411–1419

    Article  PubMed  Google Scholar 

  8. Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111

    Article  PubMed  Google Scholar 

  9. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vis Res 43:1091–1102

    Article  PubMed  Google Scholar 

  10. Lu Y, Yan Y, Chai X, Ren Q, Chen Y, Li L (2013) Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats. J Neural Eng. doi:10.1088/1741-2560/10/3/036022

    PubMed Central  Google Scholar 

  11. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vis Res 40:1785–1795

    Article  CAS  PubMed  Google Scholar 

  12. Brindley GS, Lewin W (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dobelle W, Mladejovsky M, Girvin J (1974) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt E, Bak M, Hambrecht F, Kufta C, O’rourke D, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain 119:507–522

    Article  PubMed  Google Scholar 

  15. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci 45:560–566

    Article  PubMed  Google Scholar 

  16. Chowdhury V, Morley JW, Coroneo MT (2005) Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 40:563–572. doi:10.1016/s0008-4182(05)80048-1

    Article  PubMed  Google Scholar 

  17. Yamauchi Y, Franco LM, Jackson DJ, Naber JF, Ziv RO, Rizzo JF, Kaplan HJ, Enzmann V (2005) Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. J Neural Eng 2:S48–S56

    Article  PubMed  Google Scholar 

  18. Wong Y, Chen S, Seo J, Morley J, Lovell N, Suaning G (2009) Focal activation of the feline retina via a suprachoroidal electrode array. Vis Res 49:825–833

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Woo S, Park S, Kim E, Seo J, Chung H, Kim S (2008) A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits. J Biomed Biotechnol. doi:10.1155/2008/547428

    Google Scholar 

  20. Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Tano Y (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48:256–261

    Article  PubMed  Google Scholar 

  21. Okawa Y, Fujikado T, Miyoshi T, Sawai H, Kusaka S, Mihashi T, Hirohara Y, Tano Y (2007) Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal-transretinal stimulation. Invest Ophthalmol Vis Sci 48:4777–4784

    Article  PubMed  Google Scholar 

  22. Kim ET, Kim C, Lee SW, Seo JM, Chun H, Kim SJ (2009) Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis. Invest Ophthalmol Vis Sci 50:4337–4341

    Article  PubMed  Google Scholar 

  23. Nishida K, Kamei M, Kondo M, Sakaguchi H, Suzuki M, Fujikado T, Tano Y (2010) Efficacy of suprachoroidal-transretinal stimulation in a rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci 51:2263–2268

    Article  PubMed  Google Scholar 

  24. Morimoto T, Kamei M, Nishida K, Sakaguchi H, Kanda H, Ikuno Y, Kishima H, Maruo T, Konoma K, Ozawa M, Fujikado T (2011) Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs. Invest Ophthalmol Vis Sci 52:6785–6792

    Article  PubMed  Google Scholar 

  25. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655

    Article  PubMed  Google Scholar 

  26. Sui X, Sun J, Li L, Zhou C, Luo X, Xia N, Yan Y, Chen Y, Ren Q, Chai X (2013) Evaluation of a MEMS-based dual metal-layer thin-film microelectrode array for suprachoroidal electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 21:524–531. doi:10.1109/tnsre.2012.2188042

    Article  PubMed  Google Scholar 

  27. Shivdasani MN, Fallon JB, Luu CD, Cicione R, Allen PJ, Morley JW, Williams CE (2012) Visual cortex responses to single and simultaneous multiple electrode stimulation of the retina: implications for retinal prostheses. Invest Ophthalmol Vis Sci 53:6291–6300. doi:10.1167/iovs.12-9434

    Article  PubMed  Google Scholar 

  28. Villalobos J, Allen PJ, McCombe MF, Ulaganathan M, Zamir E, Ng DC, Shepherd RK, Williams CE (2012) Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma. Graefes Arch Clin Exp Ophthalmol 250:399–407

    Article  PubMed  Google Scholar 

  29. Choudhury BP (1981) Ganglion cell distribution in the albino rabbit’s retina. Exp Neurol 72:638–644

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Lu Y, Cao P, Li X, Cai C, Chai X, Ren Q, Li L (2011) Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest Ophthalmol Vis Sci 52:146–154

    Article  PubMed  Google Scholar 

  31. Thompson J, Woolsey C, Talbot S (1950) Visual areas I and II of cerebral cortex of rabbit. J Neurophysiol 13:277–288

    CAS  PubMed  Google Scholar 

  32. Choudhury BP (1987) Visual cortex in the albino rabbit. Exp Brain Res 66:565–571

    Article  CAS  PubMed  Google Scholar 

  33. Wilms M, Eger M, Schanze T, Eckhorn R (2003) Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex. Vis Neurosci 20:543–555

    Article  PubMed  Google Scholar 

  34. Oyster CW (1968) The analysis of image motion by the rabbit retina. J Physiol 199:613–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tassicker GE (1956) Preliminary report on a retinal stimulator. Br J Physiol Opt 13:102–105

    CAS  PubMed  Google Scholar 

  36. Nakauchi K, Fujikado T, Kanda H, Kusaka S, Ozawa M, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Threshold suprachoroidal-transretinal stimulation current resulting in retinal damage in rabbits. J Neural Eng 4:S50–S57

    Article  PubMed  Google Scholar 

  37. Shivdasani MN, Luu CD, Cicione R, Fallon JB, Allen PJ, Leuenberger J, Suaning GJ, Lovell NH, Shepherd RK, Williams CE (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng. doi:10.1088/1741-2560/7/3/036008

    Google Scholar 

  38. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M (2011) Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:4726–4733

    Article  PubMed  Google Scholar 

  39. Bonham BH, Litvak LM (2008) Current focusing and steering: modeling, physiology, and psychophysics. Hear Res 242:141–153. doi:10.1016/j.heares.2008.03.006

    Article  PubMed Central  PubMed  Google Scholar 

  40. Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, Shepherd RK, Williams CE (2012) Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng. doi:10.1088/1741-2560/9/3/036009

    PubMed  Google Scholar 

  41. Wilke R, Gabel V-P, Sachs H, Schmidt K-UB, Gekeler F, Besch D, Szurman P, Stett A, Wilhelm B, Peters T (2011) Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Invest Ophthalmol Vis Sci 52:5995–6003

    Article  PubMed  Google Scholar 

  42. Horsager A, Greenberg RJ, Fine I (2010) Spatiotemporal interactions in retinal prosthesis subjects. Invest Ophthalmol Vis Sci 51:1223–1233

    Article  PubMed Central  PubMed  Google Scholar 

  43. Stronks HC, Barry MP, Dagnelie G (2013) Electrically elicited visual evoked potentials in Argus II retinal implant wearers. Invest Ophthalmol Vis Sci 54:3891–3901. doi:10.1167/iovs.13-11594

    Article  PubMed Central  PubMed  Google Scholar 

  44. Li L, Hayashida Y, Yagi T (2005) Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina. Vis Res 45:263–273. doi:10.1016/j.visres.2004.08.002

    Article  PubMed  Google Scholar 

  45. Padnick LB, Linsenmeier RA (1999) Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vis Res 39:2833–2840

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Nos. 2011CB707502/3/5, 2011CB013304), the National Natural Science Foundation of China (Nos. 61171174/60971102/61273368/91120304/61472247), SJTU SMC-Morning Star Excellent Young Scholar-B (No. 14X100010047), and the Medical-Engineering Cross Project of Shanghai Jiao Tong University (No. YG2013MS76). The authors thank Thomas FitzGibbon for comments on previous drafts of the manuscript and Yuejiao Yang for providing technical support for electrode packaging.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Care, use, and treatment of all animals received institutional ethical approval from the Ethics Committee of Shanghai Jiao Tong University and were in strict accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research, and the policies in the Guide to the Care and Use of Laboratory Animals issued by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Chai or Liming Li.

Additional information

Yan Yan and Xiaohong Sui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Sui, X., Liu, W. et al. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit. Graefes Arch Clin Exp Ophthalmol 253, 1515–1528 (2015). https://doi.org/10.1007/s00417-015-3027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3027-x

Keywords

Navigation