Skip to main content
Log in

Change in the antioxidative capacity of extraocular muscles in patients with exotropia

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

We compared the oxidative stress and antioxidant capacities of the medial rectus muscles (MRMs) between the patients with constant exotropia and control subjects.

Methods

A total of 40 MRMs from patients with constant exotropia and 40 MRMs from normal donor eyes (controls) were assessed. Neuronal nitric oxide synthase (nNOS), superoxide dismutase (SOD), and catalase levels were compared between the two groups using western blot analysis. In addition, the lipofuscin accumulation level was compared between the exotropic and control groups.

Results

According to western blot analysis, the nNOS level was significantly higher in the exotropic group than in the control group (P < 0.05). On the other hand, a catalase expression level was higher in the control group than in the exotropic group (P < 0.05). The SOD1 level did not show a significant difference between the two groups. The relative lipofuscin fluorescence intensity was higher in the exotropic group than in the control group (P < 0.001).

Conclusions

Based on these findings, the MRMs of patients with exotropia had a redox imbalance status. Further study is needed to investigate whether this imbalance in antioxidant capacity is present in the extraocular muscles of patients with other strabismus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lawler JM, Cline CC, Hu Z, Coast JR (1997) Effect of oxidative stress and acidosis on diaphragm contractile function. Am J Physiol 273:R630–636

    CAS  PubMed  Google Scholar 

  2. Reid MB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 162:401–409

    Article  CAS  PubMed  Google Scholar 

  3. Reid MB, Shoji T, Moody MR, Entman ML (1992) Reactive oxygen in skeletal muscle. II Extracellular release of free radicals. J Appl Physiol 73:1805–1809

    CAS  PubMed  Google Scholar 

  4. Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429. doi:10.1002/mus.20743

    Article  CAS  PubMed  Google Scholar 

  5. Lawler JM, Kim JH, Kwak HB, Barnes WS (2010) Redox modulation of diaphragm contractility: Interaction between DHPR and RyR channels. Free Radic Biol Med 49:1969–1977. doi:10.1016/j.freeradbiomed.2010.09.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fischer MD, Gorospe JR, Felder E, Bogdanovich S, Pedrosa-Domellof F, Ahima RS, Rubinstein NA, Hoffman EP, Khurana TS (2002) Expression profiling reveals metabolic and structural components of extraocular muscles. Physiol Genomics 9:71–84. doi:10.1152/physiolgenomics.00115.2001

    Article  CAS  PubMed  Google Scholar 

  7. Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–344. doi:10.1152/ajpregu.00469.2004

    Article  CAS  PubMed  Google Scholar 

  8. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Couillard A, Prefaut C (2005) From muscle disuse to myopathy in COPD: potential contribution of oxidative stress. Eur Respir J 26:703–719. doi:10.1183/09031936.05.00139904

    Article  CAS  PubMed  Google Scholar 

  10. Aoi W, Sakuma K (2011) Oxidative stress and skeletal muscle dysfunction with aging. Curr Aging Sci 4:101–109

    Article  CAS  PubMed  Google Scholar 

  11. Niess AM, Simon P (2007) Response and adaptation of skeletal muscle to exercise–the role of reactive oxygen species. Front Biosci 12:4826–4838

    Article  CAS  PubMed  Google Scholar 

  12. Ragusa RJ, Chow CK, St Clair DK, Porter JD (1996) Extraocular, limb and diaphragm muscle group-specific antioxidant enzyme activity patterns in control and mdx mice. J Neurol Sci 139:180–186

    Article  CAS  PubMed  Google Scholar 

  13. Sies H (1991) Oxidative stress: Oxidants and antioxidants. Academic Press, London

    Google Scholar 

  14. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879. doi:10.1089/ars.2006.8.1865

    Article  CAS  PubMed  Google Scholar 

  15. Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548. doi:10.1038/372546a0

    Article  CAS  PubMed  Google Scholar 

  16. Silvagno F, Xia H, Bredt DS (1996) Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 271:11204–11208

    Article  CAS  PubMed  Google Scholar 

  17. Richmonds CR, Kaminski HJ (2001) Nitric oxide synthase expression and effects of nitric oxide modulation on contractility of rat extraocular muscle. FASEB J 15:1764–1770

    Article  CAS  PubMed  Google Scholar 

  18. de Gritz BG, Rahko T, Korpela H (1994) Diet-induced lipofuscin and ceroid formation in growing pigs. J Comp Pathol 110:11–24

    Article  PubMed  Google Scholar 

  19. Ahmed MI, Gladden JD, Litovsky SH, Lloyd SG, Gupta H, Inusah S, Denney T Jr, Powell P, McGiffin DC, Dell'Italia LJ (2010) Increased oxidative stress and cardiomyocyte myofibrillar degeneration in patients with chronic isolated mitral regurgitation and ejection fraction >60 %. J Am Coll Cardiol 55:671–679. doi:10.1016/j.jacc.2009.08.074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 104:277–291

    Article  CAS  PubMed  Google Scholar 

  21. Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJ, Katzeff H (2005) Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radic Biol Med 38:1093–1101. doi:10.1016/j.freeradbiomed.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Terman A, Dalen H, Brunk UT (1999) Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol 34:943–957

    Article  CAS  PubMed  Google Scholar 

  23. Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237

    CAS  PubMed  Google Scholar 

  24. Park JH, Straub VA, O'Shea M (1998) Anterograde signaling by nitric oxide: characterization and in vitro reconstitution of an identified nitrergic synapse. J Neurosci 18:5463–5476

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has financial or proprietary interests in any material or method mentioned in this study.

Funding sources

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Young Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.K., Choi, J.S. & Shin, S.Y. Change in the antioxidative capacity of extraocular muscles in patients with exotropia. Graefes Arch Clin Exp Ophthalmol 253, 551–556 (2015). https://doi.org/10.1007/s00417-014-2794-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2794-0

Keywords

Navigation