Skip to main content

Advertisement

Log in

In vitro extraction of intra-corneal iron using reverse iontophoresis and vitamin C

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to optimize reverse iontophoretic (RI) extraction of ferric/ferrous ions from the cornea.

Methods

Group I consisted of the right eye corneas from 20 normal rabbits. Corneal blood staining was induced in 60 right eyes. The corneal depths from the endothelium to the epithelium layers were divided into three groups by slit-lamp examination: Group II, one-third corneal thickness; Group III, one-half corneal thickness; Group IV, full corneal thickness. RI was performed using vertical diffusion cells. The lower chamber was loaded with glutathione bicarbonate Ringer’s buffer (GBR; pH 7.0) or vitamin C (12.5 mg/mL) and GBR (pH 7.0), while the upper chamber was filled with 1 mL GBR. Progress of corneal blood staining removal was evaluated.

Results

Application of 1.5 mA to the cornea increased flux by 1.72- and 2.19-fold in Groups III and IV, respectively, but not in Groups I or II, compared to the control. When vitamin C was included, we observed significant flux increases in the controls (1.5-, 2.06-, 2.60-, and 4.59-fold) for Groups I, II, III, and IV, and under RI conditions for Groups III and IV. Following RI, the corneal endothelia appeared similar to corneas from untreated control rabbits, while Draize scores were zero.

Conclusions

These results suggested that extracellular ferric/ferrous ions could be extracted from the cornea in vitro by RI, and that vitamin C reduced Fe3+ to Fe2+ in the cornea and altered its permselectivity, thus increasing the RI contribution to iron extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walton W, Von Hagen S, Grigorian R, Zarbin M (2002) Management of traumatic hyphema. Surv Ophthalmol 47:297–334

    Article  PubMed  Google Scholar 

  2. Brodrick JD (1972) Corneal blood staining after hyphema. Br J Ophthalmol 56:589–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McDonnell PJ, Green WR, Stevens RE (1985) Blood staining of the cornea. Light microscopic and ultrastructural features. Ophthalmology 92:1668–1674

    Article  CAS  PubMed  Google Scholar 

  4. Fraser C, Liew S, Fitzsimmons R, Arnold J (2006) Spontaneous resolution of corneal blood staining. Clin Exoperiment Ophthalmol 34:279–280

    Article  Google Scholar 

  5. Andrieu-Soler C, Doat M, Halhal M, Keller N, Jonet L, BenEzra D, Behar-Cohen F (2006) Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol Vis 12:1098–1107

    CAS  PubMed  Google Scholar 

  6. Vaka SR, Sammeta SM, Day LB, Murthy SN (2008) Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res 33:661–667

    Article  CAS  PubMed  Google Scholar 

  7. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ (2008) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24:344–350

    Article  CAS  PubMed  Google Scholar 

  8. Hao J, Li SK, Liu CY, Kao WW (2009) Electrically assisted delivery of macromolecules into the corneal epithelium. Exp Eye Res 89:934–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–489

    Article  CAS  PubMed  Google Scholar 

  10. Bejjani RA, Andrieu C, Bloquel C, Berdugo M, BenEzra D, Behar-Cohen F (2007) Electrically assisted ocular gene therapy. Surv Ophthalmol 52:196–208

    Article  PubMed  Google Scholar 

  11. Kumar V, Banga AK (2012) Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 434:106–114

    Article  CAS  PubMed  Google Scholar 

  12. Huh CH, Seo KI, Park JY, Lim JG, Eun HC, Park KC (2003) A randomized, double-blind, placebo- controlled trial of vitamin C iontophoresis in melasma. Dermatology 206:316–320

    Article  CAS  PubMed  Google Scholar 

  13. Gratieri T, Gelfuso GM, Thomazini JA, Lopez RF (2010) Excised porcine cornea integrity evaluation in an in vitro model of iontophoretic ocular research. Ophthalmic Res 43:208–216

    Article  CAS  PubMed  Google Scholar 

  14. Secchi A, Deligianni V (2006) Ocular toxicology: the Draize eye test. Curr Opin Allergy Clin Immunol 6:367–372

    Article  PubMed  Google Scholar 

  15. Leboulanger B, Guy RH, Delgado-Charro MB (2004) Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas 25:R35–R50

    Article  PubMed  Google Scholar 

  16. Ebah LM, Read I, Sayce A, Morgan J, Chaloner C, Brenchley P, Mitra S (2012) Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool. Eur J Clin Investig 42:840–847

    Article  CAS  Google Scholar 

  17. Nixon S, Sieg A, Delgado-Charro MB, Guy RH (2007) Reverse iontophoresis of l-lactate: in vitro and in vivo studies. J Pharm Sci 96:3457–3465

    Article  CAS  PubMed  Google Scholar 

  18. Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL, Guy RH, Delgado-Charro MB (2009) Extraction of amino acids by reverse iontophoresis in vivo. Eur J Pharm Biopharm 72:226–231

    Article  CAS  PubMed  Google Scholar 

  19. Wascotte V, Delgado-Charro MB, Rozet E, Wallemacq P, Hubert P, Guy RH, Preat V (2007) Monitoring of urea and potassium by reverse iontophoresis in vitro. Pharm Res 24:1131–1137

    Article  CAS  PubMed  Google Scholar 

  20. Lee CK, Ching CT, Sun TP, Tsai CL, Huang W, Huang HH, Kuo JF, Lai LH, Chien MY (2010) Non-invasive and transdermal measurement of blood uric acid level in human by electroporation and reverse iontophoresis. Int J Nanomedicin 5:991–997

    CAS  Google Scholar 

  21. Marra F, Nicoli S, Padula C, Santi P (2013) Amikacin reverse iontophoresis: optimization of in vitro extraction. Int J Pharm 440:216–220

    Article  CAS  PubMed  Google Scholar 

  22. Wascotte V, Leboulanger B, Guy RH, Begona Delgado-Charro M (2005) Reverse iontophoresis of lithium: electrode formulation using a thermoreversible polymer. Eur J Pharm Biopharm 59:237–240

    Article  CAS  PubMed  Google Scholar 

  23. Eljsrrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J (2004) Delivery of gentamicin to the rabbit eye by drugloaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci 45:2543–2548

    Article  Google Scholar 

  24. GOttsch JD, Messmer EP, McNair DS, Font RL (1986) Corneal blood staining. An animal model. Ophthalmology 93:797–802

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Yang H, Chen F (2006) Corneal blood staining: an animal model and pathologic research. Chinese Journal of Ocular Trauma & Occupational Eye Disease 28:641–644, Article in Chinese

    Google Scholar 

  26. Pan SY (1988) EDTA treatment of corneal blood –staining. J Prac Chin Ophthalmol 6:17–18, Article in Chinese

    Google Scholar 

  27. Gungor S, Delgado-Charro MB, Ruiz-Perez B, Schuber W, Isom P, Moslemy P, Patane MA, Guy RH (2010) Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J Control Release 147:225–231

    Article  PubMed  Google Scholar 

  28. Dong ZM, Yin HL, Zheng YZ, Sun QL, Zhang Y (2007) Indirect determination of Vc with flame atomic absorption spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi 27:1862–1865

    CAS  PubMed  Google Scholar 

  29. Hu L, Silva SM, Damaj BB, Martin R, Michniak-Kohn BB (2011) Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches. Int J Pharm 421:53–62

    Article  CAS  PubMed  Google Scholar 

  30. Scancar J, Milacic R, Benedik M, Bukovec P (2000) Determination of trace elements and calcium in bone of the human iliac crest by atomic absorption spectrometry. Clin Chim Acta 293:187–197

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Yu N, Bai Z, Xun Y, Jin D, Li Z, Cui H (2011) Effect of menthol on ocular drug delivery. Graefes Arch Clin Exp Ophthalmol 249:1503–1510

    Article  CAS  PubMed  Google Scholar 

  32. Nova´kova´ L, Solich P, Solichova´ D (2008) HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal Chem 27:942–958

    Article  Google Scholar 

  33. Hao J, Li SK, Kao WW, Liu CY (2010) Gene delivery to cornea. Brain Res Bull 81:256–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chasteen ND (1998) Ferritin. Uptake, storage, and release of iron. Met Ions Biol Syst 35:479–514

    CAS  PubMed  Google Scholar 

  35. Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ebihara M, Akiyama M, Ohnishi Y, Tajima S, Komata K, Mitsui Y (2003) Iontophoresis promotes percutaneous absorption of L-ascorbic acid in rat skin. J Dermatol Sci 32:217–222

    Article  CAS  PubMed  Google Scholar 

  37. Goralska M, Ferrell J, Harned J, Lall M, Nagar S, Fleisher LN, McGahan MC (2009) Iron metabolism in the eye: a review. Exp Eye Res 88:204–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Le Y, Zhao YQ, Huang GR, Lv JJ, Huang M, Yang HZ, Yu FX (1984) After paracentesis injection of vitamin c on experimental ocular alkali burns affect the concentration of Vitamin c in aqueous humor. Eye Res 3:141–145, Article in Chinese

    Google Scholar 

  39. Sardi B (2004) High-dose vitamin C and iron overload. Ann Intern Med 140:846–847

    Article  PubMed  Google Scholar 

  40. Buettner GR, Jurkiewica BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  41. Khan MM, Martell AE (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation. J Am Chem Soc 89:7104–7111

    Article  CAS  PubMed  Google Scholar 

  42. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions. FASEB J 13:1007–1024

    CAS  PubMed  Google Scholar 

  43. Proteggente AR, England TG, Rice-Evans CA, Halliwell B (2001) Iron supplementation and oxidative damage to DNA in healthy individuals with high plasma ascorbate. Biochem Biophys Res Commun 288:245–251

    Article  CAS  PubMed  Google Scholar 

  44. Proteggente AR, Rehman A, Halliwell B, Rice-Evans CA (2000) Potential problems of ascorbate and iron supplementation: pro-oxidant effect in vivo. Biochem Biophys Res Commun 277:535–540

    Article  CAS  PubMed  Google Scholar 

  45. Chen K, Suh J, Carr AC, Morrow JD, Zeind J, Frei B (2000) Vitamin C suppresses oxidative lipid damage in vivo, even in the presence of iron overload. Am J Physiol Endocrinol Metab 279:E1406–E1412

    CAS  PubMed  Google Scholar 

  46. Asahara T, Shinomiya K, Naito T, Shiota H (2001) Induction of gene into the rabbit eye by iontophoresis: preliminary report. Jpn J Ophthalmol 45:31–39

    Article  CAS  PubMed  Google Scholar 

  47. Messmer EP, Gottsch J, Font RL (1984–1985) Blood staining of the cornea: a histopathologic analysis of 16 cases. Cornea 3: 205–212

  48. Patel H, Patel DV, Brookes NH, McGhee CN (2006) Clinicopathological features of severe corneal blood staining associated with proliferative diabetic retinopathy. Clin Exp Ophthalmol 34:272–274

    Article  Google Scholar 

  49. Loh A, Hadziahmetovic M, Dunaief JL (2009) Iron homeostasis and eye disease. Biochim Biophys Acta 1790:637–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ward PP, Paz E, Conneely OM (2005) Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 62:2540–2548

    Article  CAS  PubMed  Google Scholar 

  51. Reitz C, Breipohl W, Augustin A, Bours J (1998) Analysis of tear proteins by one-and two-dimensional thin-layer iosoelectric focusing, sodium dodecyl sulfate electrophoresis and lectin blotting. Detection of a new component: cystatin C. Graefes Arch Clin Exp Ophthalmol 236:894–899

    Article  CAS  PubMed  Google Scholar 

  52. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33:940–959

    Article  CAS  PubMed  Google Scholar 

  53. Weir MP, Gibson JF, Peters TJ (1984) Haemosiderin and tissue damage. Cell Biochem Funct 2:186–194

    Article  CAS  PubMed  Google Scholar 

  54. Miyazaki E, Kato J, Kobune M, Okumura K, Sasaki K, Shintani N, Arosio P, Niitsu Y (2002) Denatured H- ferritin subunit is a major constituent of haemosiderin in the liver of patients with iron overload. Gut 50:413–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Animal Center of Harbin Medical University for assistance with animal care.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, JH., Su, S., Huang, L. et al. In vitro extraction of intra-corneal iron using reverse iontophoresis and vitamin C. Graefes Arch Clin Exp Ophthalmol 252, 1245–1258 (2014). https://doi.org/10.1007/s00417-014-2681-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2681-8

Keywords

Navigation