Skip to main content

Advertisement

Log in

Upregulation of hypoxia-inducible factors and autophagy in von Hippel–Lindau-associated retinal hemangioblastoma

  • Pathology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe pathological and molecular changes of three patients with clinically severe von Hippel–Lindau (VHL)-associated retinal hemangioblastoma (RH) with rapid progression.

Methods

Medical records, ocular histopathology, and transmission electron microscopy from three cases of VHL-associated RHs at the National Eye Institute were retrospectively reviewed. One eye of each patient was enucleated. Hypoxia-inducible factor (HIF) 1α and HIF2α expressions were identified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry.

Results

All three cases had rapidly growing RHs that were resistant to multiple conventional therapies and two (patients 1 and 2) were also resistant to multiple intravitreal anti-vascular endothelial growth factor (VEGF) treatments. Macroscopically, all the enucleated eyes had multiple RHs, serous retinal detachment, severe retinal disorganization and focal hemorrhages. Histopathology showed typical RHs composed of vacuolated foamy VHL cells and capillary networks. Retinal gliosis and hemorrhages were also presented. Additionally, T lymphocytes and macrophages infiltrated in the tumors of two patients resistant to anti-VEGF therapy. Immunohistochemistry, and qRT-PCR found upregulation of HIF1α in the retinal lesions of all eyes. Importantly, upregulation of HIF2α was exclusively detected in the two cases with inflammatory infiltration and resistance to anti-VEGF therapy. Ultrastructural images showed autophagy, lipid droplets, glycogen aggregations, and cytoplasmic degeneration in many VHL cells.

Conclusions

Based on the histopathological and molecular pathological findings, autophagy, inflammation, and/or upregulation of HIF2α could potentially contribute to the aggressive course of RHs, resulting in the resistance to multiple anti-VEGF and radiation therapies in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, Sampson J, Williams A, Ferguson-Smith MA, Morton N (1991) Von Hippel–Lindau disease: a genetic study. J Med Genet 28:443–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) Von Hippel–Lindau disease. Lancet 361:2059–2067

    Article  CAS  PubMed  Google Scholar 

  3. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D et al (1988) Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269

    Article  CAS  PubMed  Google Scholar 

  4. Chan CC, Vortmeyer AO, Chew EY, Green WR, Matteson DM, Shen DF, Linehan WM, Lubensky IA, Zhuang Z (1999) VHL gene deletion and enhanced VEGF gene expression detected in the stromal cells of retinal angioma. Arch Ophthalmol 117:625–630

    Article  CAS  PubMed  Google Scholar 

  5. Chan CC, Lee YS, Zhuang Z, Hackett J, Chew EY (2004) Von Hippel–Lindau gene deletion and expression of hypoxia-inducible factor and ubiquitin in optic nerve hemangioma. Trans Am Ophthalmol Soc 102:75–79, discussion 79–81

    PubMed Central  PubMed  Google Scholar 

  6. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang V, Davis DA, Haque M, Huang LE, Yarchoan R (2005) Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res 65:3299–3306

    CAS  PubMed  Google Scholar 

  8. Lofstedt T, Fredlund E, Holmquist-Mengelbier L, Pietras A, Ovenberger M, Poellinger L, Pahlman S (2007) Hypoxia inducible factor-2alpha in cancer. Cell Cycle 6:919–926

    Article  PubMed  Google Scholar 

  9. Rankin EB, Rha J, Unger TL, Wu CH, Shutt HP, Johnson RS, Simon MC, Keith B, Haase VH (2008) Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27:5354–5358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y, Mino-Kenduson M, Lynch MP, Rueda BR, Benita Y, Xavier RJ, Chung DC (2009) HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer 124:763–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Webster AR, Maher ER, Moore AT (1999) Clinical characteristics of ocular angiomatosis in von Hippel–Lindau disease and correlation with germline mutation. Arch Ophthalmol 117:371–378

    Article  CAS  PubMed  Google Scholar 

  12. Dollfus H, Massin P, Taupin P, Nemeth C, Amara S, Giraud S, Beroud C, Dureau P, Gaudric A, Landais P, Richard S (2002) Retinal hemangioblastoma in von Hippel–Lindau disease: a clinical and molecular study. Invest Ophthalmol Vis Sci 43:3067–3074

    PubMed  Google Scholar 

  13. Annesley WH Jr, Leonard BC, Shields JA, Tasman WS (1977) Fifteen year review of treated cases of retinal angiomatosis. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 83:OP446–OP453

    PubMed  Google Scholar 

  14. Singh AD, Nouri M, Shields CL, Shields JA, Perez N (2002) Treatment of retinal capillary hemangioma. Ophthalmology 109:1799–1806

    Article  PubMed  Google Scholar 

  15. Wong WT, Chew EY (2008) Ocular von Hippel–Lindau disease: clinical update and emerging treatments. Curr Opin Ophthalmol 19:213–217

    Article  PubMed Central  PubMed  Google Scholar 

  16. Shen DF, Zhuang Z, LeHoang P, Boni R, Zheng S, Nussenblatt RB, Chan CC (1998) Utility of microdissection and polymerase chain reaction for the detection of immunoglobulin gene rearrangement and translocation in primary intraocular lymphoma. Ophthalmology 105:1664–1669

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang Z, Bertheau P, Emmert-Buck MR, Liotta LA, Gnarra J, Linehan WM, Lubensky IA (1995) A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. Am J Pathol 146:620–625

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chan CC (2003) Molecular pathology of primary intraocular lymphoma. Trans Am Ophthalmol Soc 101:275–292

    PubMed Central  PubMed  Google Scholar 

  19. Liang X, Shen D, Huang Y, Yin C, Bojanowski CM, Zhuang Z, Chan CC (2007) Molecular pathology and CXCR4 expression in surgically excised retinal hemangioblastomas associated with von Hippel–Lindau disease. Ophthalmology 114:147–156

    Article  PubMed Central  PubMed  Google Scholar 

  20. Morris MR, Hughes DJ, Tian YM, Ricketts CJ, Lau KW, Gentle D, Shuib S, Serrano-Fernandez P, Lubinski J, Wiesener MS, Pugh CW, Latif F, Ratcliffe PJ, Maher ER (2009) Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res 29:4337–4343

    CAS  PubMed  Google Scholar 

  21. Kaelin WG Jr (2008) The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  CAS  PubMed  Google Scholar 

  22. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  23. Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD (2002) The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1:247–255

    Article  CAS  PubMed  Google Scholar 

  24. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel–Lindau protein. Cancer Cell 1:237–246

    Article  CAS  PubMed  Google Scholar 

  25. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 97:8386–8391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, Pahlman S (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10:413–423

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, Popovic V, Stratakis CA, Prchal JT, Pacak K (2012) Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 367:922–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yang C, Sun MG, Matro J, Huynh TT, Rahimpour S, Prchal JT, Lechan R, Lonser R, Pacak K, Zhuang Z (2013) Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood 121:2563–2566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lotery AJ, Gibson J, Cree AJ, Downes SM, Harding SP, Rogers CA, Reeves BC, Ennis S, Chakravarthy U (2013) Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN Study. Ophthalmology 120:2637–2643

    Article  PubMed  Google Scholar 

  30. Park SK, Haase VH, Johnson RS (2007) Von Hippel–Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-phosphatase. Int J Oncol 30:341–348

    CAS  PubMed  Google Scholar 

  31. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29:4527–4538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  CAS  PubMed  Google Scholar 

  33. Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ (2008) A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14:90–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schonthaler HB, Huggenberger R, Wculek SK, Detmar M, Wagner EF (2009) Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc Natl Acad Sci U S A 106:21264–21269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Saravia M, Zapata G, Ferraiolo P, Racca L, Berra A (2009) Anti-VEGF monoclonal antibody-induced regression of corneal neovascularization and inflammation in a rabbit model of herpetic stromal keratitis. Graefes Arch Clin Exp Ophthalmol 247:1409–1416

    Article  CAS  PubMed  Google Scholar 

  36. Nakao S, Arima M, Ishikawa K, Kohno R, Kawahara S, Miyazaki M, Yoshida S, Enaida H, Hafezi-Moghadam A, Kono T, Ishibashi T (2012) Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis. Invest Ophthalmol Vis Sci 53:4323–4328

    Article  CAS  PubMed  Google Scholar 

  37. Chernoguz A, Crawford K, Vandersall A, Rao M, Willson T, Denson LA, Frischer JS (2012) Pretreatment with anti-VEGF therapy may exacerbate inflammation in experimental acute colitis. J Pediatr Surg 47:347–354

    Article  PubMed  Google Scholar 

  38. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14:1379–1392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196

    Article  CAS  PubMed  Google Scholar 

  40. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The National Eye Institute Intramural Research Program supported the study.

Disclosure/Conflict of interest

The authors declare that they have no conflict of interesst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chao Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Abu-Asab, M.S., Shen, D. et al. Upregulation of hypoxia-inducible factors and autophagy in von Hippel–Lindau-associated retinal hemangioblastoma. Graefes Arch Clin Exp Ophthalmol 252, 1319–1327 (2014). https://doi.org/10.1007/s00417-014-2660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2660-0

Keywords

Navigation