Skip to main content

Advertisement

Log in

Blockade of the VEGF isoforms in inflammatory corneal hemangiogenesis and lymphangiogenesis

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The VEGF-A family plays a crucial role in the induction of pathological corneal neovascularization. The role of the different VEGF-A isoforms during lymphangiogenesis is only little-known. Current anti-angiogenic therapies in the eye and other organs inhibit all VEGF-A isoforms, and have effects on both blood and lymphatic vessels. Here we investigate whether selective targeting of the isoform VEGF 165 is able to inhibit corneal lymphangiogenesis under inflammatory conditions.

Methods

The mouse model of suture-induced corneal neovascularization was used to assess the antihem- and antilymphangiogenic effect of topically applied pegaptanib. Corneal blood and lymph vascularized areas were analyzed morphometrically. Furthermore, we analyzed the proliferative effects of VEGF A 121, 165, and 189 on blood and lymphatic endothelial cells (BEC/LEC) via a cell-proliferation assay.

Results

Pegaptanib significantly inhibited inflammatory corneal hemangiogenesis (p < 0.01), but not lymphangiogenesis in vivo (p > 0.05), both topically as well as systemically, in the inflamed cornea. In vitro, BECs were more susceptible to pegaptanib than LECs.

Conclusions

Targeting VEGF-A 165 significantly inhibits hem- but not lymphangiogenesis, suggesting VEGF-A 165 to be critical for hem-, but dispensable for lymphangiogenesis, at least in the inflamed cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A 103:11405–11410. doi:10.1073/pnas.0506112103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  CAS  PubMed  Google Scholar 

  3. Cursiefen C, Masli S, Ng TF, Dana MR, Bornstein P, Lawler J, Streilein JW (2004) Roles of thrombospondin−1 and −2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 45:1117–1124

    Article  PubMed  Google Scholar 

  4. Cursiefen C, Chen L, Dana MR, Streilein JW (2003) Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea 22:273–281

    Article  PubMed  Google Scholar 

  5. Sano Y, Ksander BR, Streilein JW (1995) Fate of orthotopic corneal allografts in eyes that cannot support anterior chamber-associated immune deviation induction. Invest Ophthalmol Vis Sci 36:2176–2185

    CAS  PubMed  Google Scholar 

  6. Cao R, Brakenhielm E, Li X, Pietras K, Widenfalk J, Ostman A, Eriksson U, Cao Y (2002) Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors. FASEB J 16:1575–1583. doi:10.1096/fj.02–0319com

    Article  CAS  PubMed  Google Scholar 

  7. Hos D, Bock F, Dietrich T, Onderka J, Kruse FE, Thierauch KH, Cursiefen C (2008) Inflammatory corneal (lymph) angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261991, resulting in improved graft survival after corneal transplantation. Invest Ophthalmol Vis Sci 49:1836–1842. doi:10.1167/iovs.07–1314

    Article  PubMed  Google Scholar 

  8. Bock F, Konig Y, Kruse F, Baier M, Cursiefen C (2008) Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 246:281–284. doi:10.1007/s00417–007–0684–4

    Article  CAS  PubMed  Google Scholar 

  9. Cursiefen C, Cao J, Chen L, Liu Y, Maruyama K, Jackson D, Kruse FE, Wiegand SJ, Dana MR, Streilein JW (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45:2666–2673. doi:10.1167/iovs.03–13800

    Article  PubMed  Google Scholar 

  10. Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, Zahn G, Cursiefen C (2007) Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci 48:2545–2552. doi:10.1167/iovs.06–0570

    Article  PubMed  Google Scholar 

  11. Breen EC (2007) VEGF in biological control. J Cell Biochem 102:1358–1367. doi:10.1002/jcb.21579

    Article  CAS  PubMed  Google Scholar 

  12. Spitzer MS, Ziemssen F, Bartz-Schmidt KU, Gelisken F, Szurman P (2008) Treatment of age-related macular degeneration: focus on ranibizumab. Clin Ophthalmol 2:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Grisanti S, Ziemssen F (2007) Bevacizumab: off-label use in ophthalmology. Indian J Ophthalmol 55:417–420

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee JH, Canny MD, De Erkenez A, Krilleke D, Ng YS, Shima DT, Pardi A, Jucker F (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci U S A 102:18902–18907. doi:10.1073/pnas.0509069102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N (1998) Two-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  16. Fine SL, Martin DF, Kirkpatrick P (2005) Pegaptanib sodium. Nat Rev Drug Discov 4:187–188. doi:10.1038/nrd1677

    Article  CAS  PubMed  Google Scholar 

  17. Ju M, Mailhos C, Bradley J, Dowie T, Ganley M, Cook G, Calias P, Lange N, Adamis AP, Shima DT, Robinson GS (2008) Simultaneous but not prior inhibition of VEGF165 enhances the efficacy of photodynamic therapy in multiple models of ocular neovascularization. Invest Ophthalmol Vis Sci 49:662–670. doi:10.1167/iovs.07–0195

    Article  PubMed  Google Scholar 

  18. Cursiefen C, Maruyama K, Jackson DG, Streilein JW, Kruse FE (2006) Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25:443–447. doi:10.1097/01.ico.0000183485.85636.ff

    Article  PubMed  Google Scholar 

  19. Chakravarthy U, Adamis AP, Cunningham ET Jr, Goldbaum M, Guyer DR, Katz B, Patel M (2006) Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113:e1501–1525. doi:10.1016/j.ophtha.2006.02.064, 1508

    Google Scholar 

  20. http://www.mrcophth.com/macugen.htm (2014–03–19)

  21. Bock F, Onderka J, Hos D, Horn F, Martus P, Cursiefen C (2008) Improved semiautomatic method for morphometry of angiogenesis and lymphangiogenesis in corneal flatmounts. Exp Eye Res 87:462–470. doi:10.1016/j.exer.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  22. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050. doi:10.1172/JCI20465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP (1998) Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 39:18–22

    CAS  PubMed  Google Scholar 

  24. Manzano RP, Peyman GA, Khan P, Carvounis PE, Kivilcim M, Ren M, Lake JC, Chevez-Barrios P (2007) Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). Br J Ophthalmol 91:804–807. doi:10.1136/bjo.2006.107912

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132. doi:10.1038/nrd1955

    Article  CAS  PubMed  Google Scholar 

  26. Bucher F, Parthasarathy A, Bergua A, Onderka J, Regenfuss B, Cursiefen C, Bock F (2014) Topical Ranibizumab inhibits inflammatory corneal hem- and lymphangiogenesis. Acta Ophthalmol 92(2):143–148. doi:10.1111/j.1755–3768.2012.02525.x

    Article  CAS  PubMed  Google Scholar 

  27. Yu CQ, Zhang M, Matis KI, Kim C, Rosenblatt MI (2008) Vascular endothelial growth factor mediates corneal nerve repair. Invest Ophthalmol Vis Sci 49:3870–3878. doi:10.1167/iovs.07–1418

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kim EC, Lee WS, Kim MS (2010) The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats. Invest Ophthalmol Vis Sci 51:4569–4573. doi:10.1167/iovs.09–4937

    Article  PubMed  Google Scholar 

  29. Kim TI, Chung JL, Hong JP, Min K, Seo KY, Kim EK (2009) Bevacizumab application delays epithelial healing in rabbit cornea. Invest Ophthalmol Vis Sci 50:4653–4659. doi:10.1167/iovs.08–2805

    Article  PubMed  Google Scholar 

  30. Fung AE, Rosenfeld PJ, Reichel E (2006) The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide. Br J Ophthalmol 90:1344–1349. doi:10.1136/bjo.2006.099598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Carneiro AM, Barthelmes D, Falcao MS, Mendonca LS, Fonseca SL, Goncalves RM, Faria-Correia F, Falcao-Reis FM (2011) Arterial thromboembolic events in patients with exudative age-related macular degeneration treated with intravitreal bevacizumab or ranibizumab. Ophthalmologica 225:211–221. doi:10.1159/000323943

    Article  CAS  PubMed  Google Scholar 

  32. Schmucker C, Loke YK, Ehlken C, Agostini HT, Hansen LL, Antes G, Lelgemann M (2011) Intravitreal bevacizumab (Avastin) versus ranibizumab (Lucentis) for the treatment of age-related macular degeneration: a safety review. Br J Ophthalmol 95:308–317. doi:10.1136/bjo.2009.178574

    Article  PubMed  Google Scholar 

Download references

Support

IZKF Erlangen (A9); SFB 643 (“Graduiertenkolleg”); independent research by Pfizer (Berlin, Germany)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bock.

Additional information

Melanie Lipp and Franziska Bucher contributed equally, and should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipp, M., Bucher, F., Parthasarathy, A. et al. Blockade of the VEGF isoforms in inflammatory corneal hemangiogenesis and lymphangiogenesis. Graefes Arch Clin Exp Ophthalmol 252, 943–949 (2014). https://doi.org/10.1007/s00417-014-2626-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2626-2

Keywords

Navigation