Skip to main content

Advertisement

Log in

Novel use of 3T MRI in assessment of optic nerve volume in glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To measure optic nerve (ON) volume using 3 T magnetic resonance imaging (MRI), to correlate ON volume with retinal nerve fiber layer (RNFL) thickness, and to determine the viability of MRI as an objective tool in distinguishing glaucoma severity.

Methods

In this cross-sectional study, 30 severe glaucoma patients, 30 mild glaucoma patients and 30 age-matched controls were recruited. All subjects underwent standard automated perimetry, RNFL analysis and 3 T MRI examinations. Glaucoma patients were classified according to the Hodapp–Anderson–Parish classification. Pearson’s correlation coefficient was used to correlate ON volume with RNFL, and receiver operating curve (ROC) analysis was performed to determine the sensitivity and specificity of ON volume in detecting glaucoma severity.

Results

Optic nerve volume was significantly lower in both the left and right eyes of the severe glaucoma group (168.70 ± 46.28 mm3; 167.40 ± 45.36 mm3) than in the mild glaucoma group (264.03 ± 78.53 mm3; 264.76 ± 78.88 mm3) and the control group (297.80 ± 71.45 mm3; 296.56 ± 71.02 mm3). Moderate correlation was observed between: RNFL thickness and ON volume (r = 0.51, p <0.001), and in mean deviation of visual field and optic nerve volume (r = 0.60, p < 0.001). ON volume below 236 mm3 was 96 % sensitive and 80 % specific for the detection of severe glaucoma.

Conclusions

MRI measured optic nerve volume is a reliable method of assessing glaucomatous damage beyond the optic nerve head. A value of 236 mm3 and below can be used to define severe glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quigley HA (2011) Glaucoma. Lancet 377:1367–1377

    Article  PubMed  Google Scholar 

  2. Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, Sample PA, Weinreb RN (2006) Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47:2889–2895

    Article  PubMed  Google Scholar 

  3. Pueyo V, Polo V, Larrosa JM, Ferreras A, Pablo LE, Honrubia FM (2007) Diagnostic ability of the Heidelberg retina tomograph, optical coherence tomograph, and scanning laser polarimeter in open-angle glaucoma. J Glaucoma 16:173–177

    Article  PubMed  Google Scholar 

  4. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837

    Article  PubMed  Google Scholar 

  5. Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119:985–993

    Article  CAS  PubMed  Google Scholar 

  6. Leung CK, Chan WM, Hui YL, Yung WH, Woo J, Tsang MK, Tse KK (2005) Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 46:891–899

    Article  PubMed  Google Scholar 

  7. Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X, Gong Q (2013) Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3 T MR imaging. Invest Ophthalmol Vis Sci 54:545–554

    Article  PubMed  Google Scholar 

  8. Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J, Zhang H (2012) Diffusion tensor MRI reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Experiment Ophthalmol 41(1):43–49

    Article  PubMed  Google Scholar 

  9. Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti G, Nucci C (2009) Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 252:496–501

    Article  PubMed  Google Scholar 

  10. Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI (2012) Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol 33:128–134

    Article  CAS  PubMed  Google Scholar 

  11. Lagreze WA, Gaggl M, Weigel M, Schulte-Monting J, Buhler A, Bach M, Munk RD, Bley TA (2009) Retrobulbar optic nerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy. Invest Ophthalmol Vis Sci 50:4223–4228

    Article  PubMed  Google Scholar 

  12. Engelhorn T, Michelson G, Waerntges S, Otto M, El-Rafei A, Struffert T, Doerfler A (2012) Changes of radial diffusivity and fractional anisotropy in the optic nerve and optic radiation of glaucoma patients. ScientificWorldJournal 2012:849632

    Article  PubMed Central  PubMed  Google Scholar 

  13. Engelhorn T, Haider S, Michelson G, Doerfler A (2010) A new semi-quantitative approach for analysing 3 T diffusion tensor imaging of optic fibres and its clinical evaluation in glaucoma. Acad Radiol 17:1313–1316

    Article  PubMed  Google Scholar 

  14. Zhang YQ, Li J, Xu L, Zhang L, Wang ZC, Yang H, Chen CX, Wu XS, Jonas JB (2012) Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmol 90:e295–e302

    Article  PubMed  Google Scholar 

  15. Dai H, Yin D, Hu C, Morelli JN, Hu S, Yan X, Xu D (2013) Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology 55:233–243

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C, Culasso F, Floris R, Cerulli L, Garaci FG (2012) 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and stratus optical coherence tomography findings. Br J Ophthalmol 96:976–980

    Article  PubMed  Google Scholar 

  17. Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM, Cornelissen FW (2011) Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 52:2758–2766

    Article  PubMed  Google Scholar 

  18. Hodapp E, Anderson DR (1993) Clinical decisions in glaucoma, Vol. 1. Mosby, St Louis, p 204

    Google Scholar 

  19. Tench CR (2013) NeuRoi image analysis software. The University of Nottingham UK. http://www.nottingham.ac.uk/research/groups/clinicalneurology/neuroi.aspx. 19 August 2013

  20. Smith J (2013) MRIConvert and mcverter. University of Oregon. http://lcni.uoregon.edu/∼jolinda/MRIConvert/. 19 August 2013

  21. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  CAS  PubMed  Google Scholar 

  22. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481

    Article  PubMed  Google Scholar 

  23. Gupta N, Yucel YH (2007) What changes can we expect in the brain of glaucoma patients? Surv Ophthalmol 52(Suppl 2):S122–S126

    Article  PubMed  Google Scholar 

  24. Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41:1370–1379

    CAS  PubMed  Google Scholar 

  25. Kashiwagi K, Okubo T, Tsukahara S (2004) Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. J Glaucoma 13:189–195

    Article  PubMed  Google Scholar 

  26. Inglese M, Rovaris M, Bianchi S, La Mantia L, Mancardi GL, Ghezzi A, Montagna P, Salvi F, Filippi M (2001) Magnetic resonance imaging, magnetisation transfer imaging, and diffusion weighted imaging correlates of optic nerve, brain, and cervical cord damage in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70:444–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Poinoosawmy D, Fontana L, Wu JX, Fitzke FW, Hitchings RA (1997) Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Seider MI, Lee RY, Wang D, Pekmezci M, Porco TC, Lin SC (2009) Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography. J Glaucoma 18:595–600

    Article  PubMed Central  PubMed  Google Scholar 

  29. Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, Varma R, Greenfield D, Liebmann J, Araie M, Tomita G, Maeda N, Garway-Heath DF (2011) Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology 118:2403–2408

    Article  PubMed  Google Scholar 

  30. Bolacchi F, Garaci FG, Martucci A, Meschini A, Fornari M, Marziali S, Mancino R, Squillaci E, Floris R, Cerulli L, Simonetti G, Nucci C (2012) Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci 53:4191–4196

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the University of Malaya research grants J-20518-73808 and P0083/2012A.

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norlina M. Ramli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramli, N.M., Sidek, S., Rahman, F.A. et al. Novel use of 3T MRI in assessment of optic nerve volume in glaucoma. Graefes Arch Clin Exp Ophthalmol 252, 995–1000 (2014). https://doi.org/10.1007/s00417-014-2622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2622-6

Keywords

Navigation