Skip to main content

Advertisement

Log in

The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of axial length on SD-OCT and cSLO size measurements from the Heidelberg Spectralis.

Methods

In this pilot study, eight emmetropic pseudophakic eyes with subretinal visual implant were selected. The axial length was measured in three short (<22.5 mm), three medium (22.51–25.50 mm) and two long (>25.52 mm) eyes. The known size of subretinal implant sensor field (2800 × 2800 μm) was measured on 15 images per eye with cSLO and SD-OCT.

Results

The mean axial length was 20.8 ± 0.8 mm in short eyes, 23.3 ± 0.4 mm in medium eyes, and 26.3 ± 0.5 mm in long eyes respectively. We found in short eyes, in medium eyes and in long eyes a mean value of sensor field size measurements from cSLO of 3327 ± 9 μm, 2800 ± 9 μm and 2589 ± 12 μm and from SD-OCT of 3328 ± 9 μm, 2800 ± 12 μm and 2585 ± 19 μm respectively. The size measurements decreased in SD-OCT and cSLO measurements with longer axial lengths significantly (p < 0.0001).

Conclusion

The present findings demonstrate accuracy of the scaling in cSLO and SD-OCT measurements of the Heidelberg Spectralis for emmetropic medium eyes. The size measurements from SD-OCT to those from cSLO were approximately equal. Caution is recommended when comparing the measured values of short and long eyes with the normative database of the instrument. Further studies with larger sample sizes are needed to confirm findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95:171–177

    Article  PubMed  Google Scholar 

  2. Bae SH, Hwang JS, Yu HG (2012) Comparative analysis of macular microstructure by spectral-domain optical coherence tomography before and after silicone oil removal. Retina 32:1874–1883

    PubMed  CAS  Google Scholar 

  3. Bailey TJ, Davis DH, Vance JE, Hyde DR (2012) Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci 53:3126–3138

    Article  PubMed Central  PubMed  Google Scholar 

  4. Coscas G, Coscas F, Vismara S, Souied E, Soubrane G (2008) Spectral domain OCT in age-related macular degeneration: preliminary results with Spectralis HRA-OCT. J Fr Ophtalmol 31:353–361

    Article  PubMed  CAS  Google Scholar 

  5. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stingl K, Greppmaier U, Wilhelm B, Zrenner E (2010) Subretinal visual implants. Klin Monatsbl Augenheilkd 227:940–945

    Article  PubMed  CAS  Google Scholar 

  7. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hörtdörfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:20130077

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kusnyerik A, Greppmaier U, Wilke R, Gekeler F, Wilhelm B, Sachs HG, Bartz-Schmidt KU, Klose U, Stingl K, Resch MD, Hekmat A, Bruckmann A, Karacs K, Nemeth J, Suveges I, Zrenner E (2012) Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 53:3748–3755

    Article  PubMed  Google Scholar 

  9. Leung CK, Cheng AC, Chong KK, Leung KS, Mohamed S, Lau CS, Cheung CY, Chu GC, Lai RY, Pang CC, Lam DS (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48:3178–3183

    Article  PubMed  Google Scholar 

  10. Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61

    Article  PubMed  Google Scholar 

  11. Bartz-Schmidt KU, Weber J, Heimann K (1994) Validity of two-dimensional data obtained with the Heidelberg retina tomograph as verified by direct measurements in normal optic nerve heads. Ger J Ophthalmol 3:400–405

    PubMed  CAS  Google Scholar 

  12. Rudnicka AR, Burk RO, Edgar DF, Fitzke FW (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192

    Article  PubMed  CAS  Google Scholar 

  13. Rudnicka AR, Edgar DF, Bennett AG (1992) Construction of a model eye and its applications. Ophthalmic Physiol Opt 12:485–490

    Article  PubMed  CAS  Google Scholar 

  14. Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367

    Article  PubMed  CAS  Google Scholar 

  15. Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82:643–649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM (2008) Magnification characteristics of the optical coherence tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt 28:21–28

    Article  PubMed  Google Scholar 

  17. Bartling H, Wanger P, Martin L (2008) Measurement of optic disc parameters on digital fundus photographs: algorithm development and evaluation. Acta Ophthalmol 86:837–841

    Article  PubMed  Google Scholar 

  18. Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K (2012) Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 53:4519–4530

    Article  PubMed  Google Scholar 

  19. Littmann H (1982) Determination of the real size of an object on the fundus of the living eye. Klin Monatsbl Augenheilkd 180:286–289

    Article  PubMed  CAS  Google Scholar 

  20. Health Quality Ontario (2009) Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser 9:1–22

    Google Scholar 

  21. Goldenberg D, Soiberman U, Loewenstein A, Goldstein M (2012) Heidelberg spectral-domain optical coherence tomographic findings in retinal artery macroaneurysm. Retina 32:990–995

    Article  PubMed  Google Scholar 

  22. Oster SF, Mojana F, Bartsch DU, Goldbaum M, Freeman WR (2010) Dynamics of the macular hole-silicone oil tamponade interface with patient positioning as imaged by spectral domain-optical coherence tomography. Retina 30:924–992

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jumper JM, Gallemore RP, McCuen BW 2nd, Toth CA (2000) Features of macular hole closure in the early postoperative period using optical coherence tomography. Retina 20:232–237

    Article  PubMed  CAS  Google Scholar 

  24. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615

    Article  PubMed  CAS  Google Scholar 

Download references

Competing interests

None (no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work).

Patient consent

Obtained.

Ethics approval

This study was approved by the institutional review board of the University of Tübingen, and adhered to the tenets of the Declaration of Helsinki.

Funding statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Röck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röck, T., Wilhelm, B., Bartz-Schmidt, K.U. et al. The influence of axial length on confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography size measurements: a pilot study. Graefes Arch Clin Exp Ophthalmol 252, 589–593 (2014). https://doi.org/10.1007/s00417-014-2578-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2578-6

Keywords

Navigation