Skip to main content

Advertisement

Log in

Intravitreal vascular endothelial growth factor

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether a specific pre-analytical stabilization regimen is needed for naïve vitreous taps to detect true values of intrinsic VEGF levels.

Methods

Fourteen consecutive patients with different vitreomacular pathologies without blood–retina-barrier breakdown were scheduled for standard 23-gauge three-port pars plana vitrectomy, and naïve vitreous taps were sampled at the beginning of each procedure. The extracted vitreous specimen was split; one half was immediately stored in a −20 °C freezer (unstabilized samples) and the other half was instantly stabilized with albumin (2.5 % final conc.), followed by arginine stabilization (1.25 M final conc.) and consecutively stored in a −20 °C freezer (stabilized samples).

Results

Intravitreal VEGF was detected in all 14 analyzed samples (100 %). VEGF levels were shown to be 46.5 pg/ml ± 62.3 pg/ml (MV ± SD; range: 5.99–232.3 pg/ml) in unstabilized, and 120.4 pg/ml ± 94.4 pg/ml (range: 42.9 pg/ml–289.6 pg/ml) in stabilized vitreous samples. Intravitreal VEGF levels in stabilized vitreous samples were on average 2.6-fold, and thus significantly higher than in unstabilized taps of same eyes (p = 0.001, Wilcoxon test). VEGF levels in stabilized vitreous samples can be up to 8.5 times higher than in corresponding unstabilized vitreous taps of same eyes (bootstrap analysis). Intravitreal VEGF levels in unstabilized samples correlate with those in stabilized vitreous taps (r = 0.594; p = 0.025; Pearson).

Conclusions

An adequate pre-analytic stabilization regimen is needed to evaluate the most accurate intravitreal VEGF levels. This in turn will result in a better understanding of the physiological as well as pathological role of VEGF within the eye. Furthermore, knowing the true value of intravitreal VEGF levels will help to calculate the dosage of intravitrealy applied anti-VEGF drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ford KN, Saint-Geniez M, Walshe T, Zahr A, D’Amore PA (2011) Expression and role of VEGF in the adult retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:9478–9487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Kim LA, D’Amore PA (2012) A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol 181:376–379

    Article  PubMed  Google Scholar 

  3. Chen J, Smith LEH (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  4. Sato T, Kusaka S, Shimojo H, Fujikado T (2009) Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 116:2165–2169

    Article  PubMed  Google Scholar 

  5. Bressler SB (2009) Introduction: understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. Ophthalmology 116(10 Suppl):S1–S7

    Article  PubMed  Google Scholar 

  6. Oh IK, Kim SW, Oh J, Lee TS, Huh K (2010) Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr Eye Res 35:1116–1127

    Article  PubMed  CAS  Google Scholar 

  7. Noma H, Funatsu H, Mimura T, Harino S, Hori S (2009) Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmology 116:87–93

    Article  PubMed  Google Scholar 

  8. Noma H, Minamoto A, Funatsu H, Tsukamoto H, Nakano K, Yamashita H, Mishima HK (2006) Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 244:309–315

    Article  PubMed  CAS  Google Scholar 

  9. Noma H, Funatsu H, Mimura T, Harino S, Hori S (2010) Aqueous humor levels of vasoactive molecules correlate with vitreous levels and macular edema in central retinal vein occlusion. Eur J Ophthalmol 20:402–409

    PubMed  Google Scholar 

  10. Noma H, Funatsu H, Mimura T, Shimada K (2010) Visual acuity and foveal thickness after vitrectomy for macular edema. Ophthalmologica 224:367–373

    Article  PubMed  Google Scholar 

  11. Sato T, Wada K, Arahori H, Kuno N, Imoto K, Iwahashi-Shima C, Kusaka S (2012) Serum concentrations of bevacizumab (Avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol 153:327–333

    Article  PubMed  CAS  Google Scholar 

  12. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M 3rd, Ferris FL (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119:1388–1398

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bertelmann T, Spychalska M, Kohlberger L, Strodthoff S, Witteborn M, Kicova N, Sachs U, Irle S, Mennel S (2013) Intracameral concentrations of the fibrinolytic system components in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 251(12):2697–2704

    Article  PubMed  CAS  Google Scholar 

  14. Bertelmann T, Mennel S, Sekundo W, Strodthoff S, Witteborn MC, Stief T, Nguyen N, Koss MJ (2013) Intravitreal functional plasminogen is elevated in central retinal vein occlusion. Ophthalmic Res 50(3):151–159

    Article  PubMed  CAS  Google Scholar 

  15. Esser P, Heimann K, Bartz-Schmidt KU, Walter P, Krott R, Weller M (1997) Plasminogen in proliferative vitreoretinal disorders. Br J Ophthalmol 81:590–594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood–retinal barrier. Eur J Ophthalmol 21(Suppl 6):S3–S9

    PubMed  Google Scholar 

  17. Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, Hirayama T, Tamura H, Yamashita H, Minamoto A, Mishima HK (2008) Aqueous humor levels of cytokines are correlated to vitreous levels and severity of macular edema in branch retinal vein occlusion. Eye (Lond) 22:42–48

    Article  CAS  Google Scholar 

  18. De Smet MD, Okada AA (2010) Cystoid macular edema in uveitis. Dev Ophthalmol 47:136–147

    Article  PubMed  Google Scholar 

  19. Cornut PL, Francais-Maury C, Mauget-Faysse M (2008) Macular edema from various etiologies. J Fr Ophthalmol 31:225–233

    Article  Google Scholar 

  20. Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, Picard E, Zhou E, Lachapelle P, Chemtob S (2011) Understanding retinopathy of prematurity: update on pathogenesis. Neonatology 100:343–353

    Article  PubMed  CAS  Google Scholar 

  21. Stahl A, Lagreze WA, Agostini HAT (2012) Pathogenese der Frühgeborenenretinopathie. Ophthalmologe 109:1174–1181

    Article  PubMed  CAS  Google Scholar 

  22. Funatsu H, Yamashita H, Ikeda T, Nakanishi Y, Kitano S, Hori S (2002) Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with diabetic macular edema and other retinal disorders. Am J Ophthalmol 133:537–543

    Article  PubMed  CAS  Google Scholar 

  23. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353

    Article  PubMed  CAS  Google Scholar 

  24. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S (2005) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 112:806–816

    Article  PubMed  Google Scholar 

  25. Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, Kurimoto M, Murakami T, Kimura T, Takagi H (2005) Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 139:476–481

    Article  PubMed  CAS  Google Scholar 

  26. Patel JI, Tombran-Tink J, Hykin PG, Gregor PH, Gregor ZJ, Vree IA (2006) Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: implications for structural differences in macular profiles. Exp Eye Res 82:798–806

    Article  PubMed  CAS  Google Scholar 

  27. Matsunaga N, Chikaraishi Y, Izuta H, Ogata N, Shimazawa M, Matsumura M, Hara H (2008) Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy. Ophthalmology 115:1916–1922

    Article  PubMed  Google Scholar 

  28. Noma H, Funatsu H, Mimura T, Shimada K (2010) Increase of aqueous inflammatory factors in macular edema with branch retinal vein occlusion. J Inflamm 7:44

    Article  CAS  Google Scholar 

  29. Noma H, Funatsu H, Harino S, Mimura T, Eguchi S, Hori S (2011) Vitreous inflammatory factors in macular edema with central retinal vein occlusion. Jpn J Ophthalmol 55:248–255

    Article  PubMed  CAS  Google Scholar 

  30. Stief TW (2008) Arginine conserves the hemostasis activation state of plasma even against freezing/thawing. In: Schäfer HA, Wohlbier LM (eds) Diamino amino acids. Nova, New York, pp 219–233

    Google Scholar 

  31. Loukovaara S, Robciuc A, Holopainen JM, Lehti K, Pessi T, Liinamaa J, Kukkonen KT, Jauhiainen M, Koli K, Keski-Oja J, Immonem I (2013) Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFbeta1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol 91(6):531–539. doi:10.1111/j.1755-3768.2012.02473.x

    Article  PubMed  CAS  Google Scholar 

  32. Clausen R, Weller M, Wiedemann P, Heimann K, Hilgers RD, Zilles K (1991) An immunochemical quantitative analysis of the protein pattern in physiologic and pathologic vitreous. Graefes Arch Clin Exp Ophthalmol 229(2):186–190

    Article  PubMed  CAS  Google Scholar 

  33. Herold, G (2012) Innere Medizin, eine vorlesungsorientierte Darstellung, 2012: Spezieller Teil: Referenzbereichsliste. Herold, Munich, pp 930–937. ISBN: 978-3-9814660-1-0

  34. Kruithof EK, Ransijn A, Bachmann F (1982) Influence of detergents on the measurement of the fibrinolytic activity of plasminogen activators. Thromb Res 28(2):251–260

    Article  PubMed  CAS  Google Scholar 

  35. Stief TW (2012) Thrombin—applied clinical biochemistry of the main factor of coagulation. In: Stief T (ed) Thrombin: function and pathophysiology. Nova, New York, pp vii–xx

    Google Scholar 

  36. Koss MJ, Pfister M, Koch FH (2011) Inflammatory and angiogenic protein detection in the human vitreous: cytometric bead assay. J Ophthalmol 2011:459251. doi:10.1155/2011/459251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Mantel I, Deli A, Iglesias K, Ambresin A (2013) Prospective study evaluating the predictability of need for retreatment with intravitreal ranibizumab for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 251(3):697–704

    Article  PubMed  CAS  Google Scholar 

  38. Muether PS, Hermann MM, Dröge K, Kirchhof B, Fauser S (2013) Long-term stability of vascular endothelial growth factor suppression time under ranibizumab treatment in age-related macular degeneration. Am J Ophthalmol 156(5):989–993

    Article  PubMed  CAS  Google Scholar 

  39. Muether PS, Neuhann I, Buhl C, Hermann MM, Kirchhof B, Fauser S (2013) Intraocular growth factors and cytokines in patients with dry and neovascular age-related macular degeneration. Retina 33(9):1809–1814

    Article  PubMed  CAS  Google Scholar 

  40. Campochiaro PA, Choy DF, Do DV, Hafiz G, Shah SM, Nguyen QD, Rubio R, Arron JR (2009) Monitoring ocular drug therapy by analysis of aqueous samples. Ophthalmology 116(11):2158–2164

    Article  PubMed  Google Scholar 

  41. Ecker SM, Hines JC, Pfahler SM, Glaser BM (2011) Aqueous cytokine and growth factor levels do not reliably reflect those levels found in the vitreous. Mol Vis 17:2856–2863

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Koss MJ, Pfister M, Rothweiler F, Michaelis M, Cinatl J, Schubert R, Koch FH (2012) Comparison of cytokine levels from undiluted vitreous of untreated patients with retinal vein occlusion. Acta Ophthalmol 90:e98–e103

    Article  PubMed  Google Scholar 

  43. Muether PS, Droege KM, Fauser S (2013) Vascular endothelial growth factor suppression times in patients with diabetic macular oedema treated with ranibizumab. Br J Ophthalmol 98(2):179–181

    PubMed  Google Scholar 

  44. Muether PS, Hermann MM, Viebahn U, Kirchhof B, Fauser S (2012) Vascular endothelial growth factor in patients with exudative age-related macular degeneration treated with ranibizumab. Ophthalmology 119(10):2082–2086

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors declares an actual or potential conflict of interest.

Declaration of funding sources

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bertelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertelmann, T., Schulze, S., Bölöni, R. et al. Intravitreal vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 252, 583–588 (2014). https://doi.org/10.1007/s00417-014-2577-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2577-7

Keywords

Navigation