Skip to main content

Advertisement

Log in

Normative values of peripheral retinal thickness measured with Spectralis OCT in healthy young adults

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the range of peripheral retinal thickness (PRT) in young healthy human subjects by Spectralis HRA + OCT, and to analyze a potential association between the peripheral location, spherical equivalent (SE), axial length (AL), and gender.

Methods

After pupil dilation, the peripheral retina was scanned by means of six volume protocols (9 × 7.5 mm), each consisting of 31 B-scans. PRT was determined at 4,500, 5,500, 6,500 and 7,500 μm eccentricity from the fovea and the optic nerve head (ONH). Data points were collected every 22.5°. Six additional data points at a distance of 9,000 μm were included. In 11 subjects, OCT measurements were performed twice to evaluate reproducibility. Coefficients of variation (COV) were calculated.

Results

Randomly selected eyes of 50 subjects (19–30 years) with AL of 21–27 mm (SE: −5.75 to +5.25 dpt) were included in the study. Mean PRT decreased significantly (p ≤ 0.001, r = −0.99) towards the periphery, reaching a minimum at 9,000 μm eccentricity (mean PRT: 187.7 ± 8.9 μm). Multiple regression analysis revealed a significant association of PRT with AL at nasal and temporal locations as well as gender for temporal locations. COVs ranged from 0.44 to 2.90 %, with highest COVs found nasal to the fovea.

Conclusions

This is the first study to report normative data of PRT outside the ETDRS grid and to show a significant continuous almost linear decrease of the RT from the center into the periphery. The data will be valuable to detect peripheral pathologies of the retina in early stages of peripheral retinal dystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  Google Scholar 

  2. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–333

    Article  CAS  PubMed  Google Scholar 

  3. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463

    Article  PubMed  Google Scholar 

  4. van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26:57–77

    Article  PubMed  Google Scholar 

  5. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Google Scholar 

  6. Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, de Boer JF (2005) Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 123:1715–1720

    Article  PubMed  Google Scholar 

  7. Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115:1071–1078

    Article  PubMed  Google Scholar 

  8. Weng Sehu K, Lee WR (2005) Ophthalmic pathology. An illustrated guide for clinicians. Blackwell, Oxford

  9. Crone RA (1977) Physiology of the retinal periphery. Ber Zusammenkunft Dtsch Ophthalmol Ges 74:17–21

    CAS  PubMed  Google Scholar 

  10. Kumar J, Paul SD, Singh K (1971) Periphery of the retina. A clinical study. Ophthalmologica 163:150–170

    Article  CAS  PubMed  Google Scholar 

  11. Naumann GO (1997) Pathologie des Auges. Springer, Berlin

    Book  Google Scholar 

  12. Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, Kruse FE, Mardin CY (2010) Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma 19:475–482

    Article  PubMed  Google Scholar 

  13. Chopovska Y, Jaeger M, Rambow R, Lorenz B (2011) Comparison of central retinal thickness in healthy children and adults measured with the Heidelberg Spectralis OCT and the Zeiss Stratus OCT 3. Ophthalmologica 225:27–36

    Article  PubMed  Google Scholar 

  14. Grover S, Murthy RK, Brar VS, Chalam KV (2010) Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. Invest Ophthalmol Vis Sci 51:2644–2647

    Article  PubMed  Google Scholar 

  15. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437

    Article  PubMed  Google Scholar 

  16. Gregori NZ, Lam BL, Gregori G, Ranganathan S, Stone EM, Morante A, Abukhalil F, Aroucha PR (2013) Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis. Ophthalmology 120:169–174

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kothari A, Naredran V, Saravanan VR (2012) In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems. Indian J Ophthalmol 60:235–239

    Article  PubMed Central  PubMed  Google Scholar 

  18. ETDRS (1991) Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 98:741–756

    Article  Google Scholar 

  19. Wenner Y, Wismann S, Jäger M, Pons-Kühnemann J, Lorenz B (2011) Interchangeability of macular thickness measurements between different volumetric protocols of Spectralis optical coherence tomography in normal eyes. Graefes Arch Clin Exp Ophthalmol 249:1137–1145

    Article  PubMed  Google Scholar 

  20. Chan A, Duker JS, Ko TH, Fujimoto JG, Schumann JS (2006) Nomal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 124:193–198

    Article  PubMed Central  PubMed  Google Scholar 

  21. Cohen MJ, Kaliner E, Frenkel S, Kogan M, Miron H, Blumenthal EZ (2008) Morphometric analysis of human peripapillary retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci 49:941–944

    Article  PubMed  Google Scholar 

  22. Frenkel S, Morgan JE, Blumenthal EZ (2005) Histological measurement of retinal nerve fibre layer thickness. Eye 19:491–498

    Article  CAS  PubMed  Google Scholar 

  23. Varma R, Skaf M, Barron E (1996) Retinal nerve fiber layer thickness in normal human eyes. Ophthalmology 103:2114–2119

    Article  CAS  PubMed  Google Scholar 

  24. Menke MN, Dabov S, Knecht P, Sturm V (2009) Reproducibility of retinal thickness measurements in healthy subjects using Spectralis optical coherence tomography. Am J Ophthalmol 147:467–472

    Article  PubMed  Google Scholar 

  25. Barrio-Barrio J, Noval S, Galdós M, Ruiz-Canela M, Bonet E, Capote M, Lopez M (2013) Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol 91:e56–e63

    Article  PubMed  Google Scholar 

  26. Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, Varma R, Greenfield D, Liebmann J, Araie M, Tomita G, Maeda N, Garway-Heath DF (2011) Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology 118:2403–2408

    Article  PubMed  Google Scholar 

  27. Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, Kishi S, Matsushita K, Maeda N, Shirakashi M, Abe H, Ohkubo S, Sugiyama K, Iwase A, Yoshimura N (2011) Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779

    Article  PubMed  Google Scholar 

  28. Song WK, Lee SC, Lee ES, Kim CY, Kim SS (2010) Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 51:3913–3918

    Article  PubMed  Google Scholar 

  29. Yanni SE, Wang J, Cheng CS, Locke KI, Wen Y, Birch DG, Birch EE (2013) Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol 155:354–360

    Article  PubMed Central  PubMed  Google Scholar 

  30. Perkins ES, Hammond B, Milliken AB (1976) Simple method of determining the axial length of the eye. Br J Ophthalmol 60:266–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hyunh SC, Wang XY, Rochtichina E (2006) Mitchell P (2006) Distribution of macular thickness by optical coherence tomography: findings from a popultion-based study of 6-year old children. Invest Ophthalmol Vis Sci 47:2351–2357

    Article  Google Scholar 

  32. Luo HD, Gazzard G, Fong A, Aung T, Hoh ST, Loon SC, Healey P, Tan DT, Wong TY, Saw SM (2006) Myopia, axial length, and OCT characteristics of the macula in Singaporean children. Invest Ophthalmol Vis Sci 47:2773–2781

    Article  PubMed  Google Scholar 

  33. Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, Aung T (2005) The use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 46:974–978

    Article  PubMed  Google Scholar 

  34. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial length, and OCT characteristics of the macula in Singaporean children. Retina 23:177–182

    Article  PubMed  Google Scholar 

  35. Oner V, Aykut V, Tas M, Alakus MF, Iscan Y (2013) Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography. Br J Ophthalmol 97:75–79

    Article  PubMed  Google Scholar 

  36. Ehnes A, Wenner Y, Friedburg C, Preising MN, Bowl W, Sekundo W, Meyer zu Bexten E, Stieger K, Lorenz B (2014). Optical Coherence Tomography (OCT) Device Independent Intra-retinal Layer Segmentation. TVST 7(2) in press

Download references

Conflict of interest

We hereby state that none of the authors has a proprietary interest in any of the products mentioned in this study. None of the authors have received any financial support from Heidelberg Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Lorenz.

Additional information

Yaroslava Wenner and Stephan Wismann have equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenner, Y., Wismann, S., Preising, M.N. et al. Normative values of peripheral retinal thickness measured with Spectralis OCT in healthy young adults. Graefes Arch Clin Exp Ophthalmol 252, 1195–1205 (2014). https://doi.org/10.1007/s00417-013-2560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2560-8

Keywords

Navigation