Skip to main content

Advertisement

Log in

Effects of arteriolar constriction on retinal gene expression and Müller cell responses in a rat model of branch retinal vein occlusion

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To investigate the effect of induced arteriolar constriction (AC) on alterations in gene expression of factors implicated in the development of edema in branch retinal vein occlusion (BRVO).

Methods

In Brown-Norway rats, BRVO was induced by laser photocoagulation of the veins in one half of the retina. AC of the afferent arterioles was performed 30 min later. We then determined the expression of Vegfa, Vegfb, Pedf, Kir4.1, Aqp4, Aqp1, Il1ß, and Il6 with real-time polymerase chain reaction (RT-PCR) in the neuroretina and retinal pigment epithelium (RPE) after 1, 3, and 7 days. Immunostaining against GFAP, aquaporin (AQP)-4, and Kir4.1 was performed on days 1 and 3.

Results

BRVO resulted in transient upregulation of Vegfa in the neuroretina on day 1. The expressions of Kir4.1, AQP4, and AQP1 were downregulated, and Il1ß and Il6 were strongly upregulated, on days 1 and 3. The retinal distribution of GFAP and AQP4 proteins remained unaltered, while the Kir4.1 protein displayed redistribution from polarized to uniform retinal distribution. AC accelerated the restoration of downregulated Kir4.1, Aqp4, and Aqp1 in the RPE, of Kir4.1 in the neuroretina, and of upregulated Il6 in the neuroretina. AC did not influence the gliotic alterations of Müller cells and the redistribution of the Kir4.1 protein.

Conclusion

Constriction of the afferent artery in the BRVO region accelerated the restoration of potassium channels and Il6. These alterations may contribute to faster resorption of retinal edema, and may decrease the level of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rehak M, Wiedemann P (2010) Retinal vein thrombosis: pathogenesis and management. J Thromb Haemost 8:1886–1894

    Article  CAS  PubMed  Google Scholar 

  2. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  3. Tso MOM (1982) Pathology of cystoid macular edema. Ophthalmology 89:902–915

    Article  CAS  PubMed  Google Scholar 

  4. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249

    Article  CAS  PubMed  Google Scholar 

  5. Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36:241–249

    Article  PubMed  Google Scholar 

  6. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective ß-isoform-selective inhibitor. Diabetes 46:1473–1480

    Article  CAS  PubMed  Google Scholar 

  7. Derevjanik NL, Vinores SA, Xiao WH, Mori K, Turon T, Hudish T, Dong S, Campochiaro PA (2002) Quantitative assessment of the integrity of the blood-retinal barrier in mice. Invest Ophthalmol Vis Sci 43:2462–2467

    PubMed  Google Scholar 

  8. Bastiaans J, van Meurs JC, van Holten-Neelen C, Nijenhuis MS, Kolijn-Couwenberg MJ, van Hagen PM, Kuijpers RW, Hooijkaas H, Dik WA (2013) Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders? Graefes Arch Clin Exp Ophthalmol 251:1723–1733

    Article  PubMed  Google Scholar 

  9. Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12

    Article  PubMed  Google Scholar 

  10. Noma H, Funatsu H, Mimura T, Harino S, Eguchi S, Hori S (2010) Pigment epithelium-derived factor and vascular endothelial growth factor in branch retinal vein occlusion with macular edema. Graefes Arch Clin Exp Ophthalmol 248:1559–1565

    Article  CAS  PubMed  Google Scholar 

  11. Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Prog Retin Eye Res 26:263–301

    Article  CAS  PubMed  Google Scholar 

  12. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44:2803–2808

    Article  PubMed  Google Scholar 

  13. Rehak M, Hollborn M, Iandiev I (2009) Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat. Invest Ophthalmol Vis Sci 50:2359–2367

    Article  PubMed  Google Scholar 

  14. Ramezani A, Esfandiari H, Entezari M, Moradian S, Soheilian M, Dehsarvi B, Yaseri M (2012) Three intravitreal bevacizumab versus two intravitreal triamcinolone injections in recent-onset branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 250:1149–1160

    Article  CAS  PubMed  Google Scholar 

  15. Anon (1984) Branch vein occlusion study group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol 98:271–282

    Google Scholar 

  16. L’Esperance F (1975) Ocular Photocoagulation. A Stereoscopic Atlas. St. Louis, CV Mosby, pp 215–222

    Google Scholar 

  17. Jalkh AE, Avila PM, Zakka KA, Trempe CL, Schepens CS (1984) Chronic macular edema in retinal branch vein occlusion: role of laser photocoagulation. Annals Ophthalmol 16:526–533

    CAS  Google Scholar 

  18. Rehak J, Dusek L, Sin M, Babkova B, Pracharova Z, Rehak M (2013) Long-term visual outcome after arteriolar constriction in patients with branch retinal vein occlusion. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. doi:10.5507/bp.2013.008. Epub 2013 Feb 18

    Google Scholar 

  19. Erdol H, Akyol N (2000) Arterial crimping in branch retinal vein occlusion with macular edema. Acta Ophthalmol Scand 78:456–459

    Article  CAS  PubMed  Google Scholar 

  20. Kohner EM, Dollery CT, Shakib M, Henkind P, Paterson JW, De Oliveira LN, Bulpitt CJ (1970) Experimental retinal branch vein occlusion. Am J Ophthalmol 69:778–825

    CAS  PubMed  Google Scholar 

  21. Donati G, Pournaras CJ, Pizzolato GP, Tsacopoulos M (1997) Decreased nitric oxide production accounts for secondary arteriolar constriction after retinal branch vein occlusion. Invest Ophthalmol Vis Sci 38:1450–1457

    CAS  PubMed  Google Scholar 

  22. Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefánsson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330

    Article  CAS  PubMed  Google Scholar 

  23. Saito Y, Park L, Skolik SA, Alfaro DV, Chaudhry NA, Barnstable CJ, Liggett PE (1997) Experimental preretinal neovascularization by laser-induced venous thrombosis in rats. Curr Eye Res 16:26–33

    Article  CAS  PubMed  Google Scholar 

  24. Rehak M, Drechsler F, Köferl P, Hollborn M, Wiedemann P, Bringmann A, Kohen L (2011) Effects of intravitreal triamcinolone acetonide on retinal gene expression in a rat model of central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 249:1175–1183

    Article  CAS  PubMed  Google Scholar 

  25. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451

    Article  CAS  PubMed  Google Scholar 

  26. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sanchez RN, Chan CK, Garg S, Kwong JM, Wong MJ, Sadun AA, Lam TT (2003) Interleukin-6 in retinal ischemia reperfusion injury in rats. Invest Ophthalmol Vis Sci 44:4006–4011

    Article  PubMed  Google Scholar 

  28. Puwarawuttipanit W, Bragg AD, Frydenlund DS, Mylonakou MN, Nagelhus EA, Peters MF, Kotchabhakdi N, Adams ME, Froehner SC, Haug FM, Ottersen OP, Amiry-Moghaddam M (2006) Differential effect of alpha-syntrophin knockout on aquaporin-4 and Kir4.1 expression in retinal macroglial cells in mice. Neuroscience 137:165–175

    Article  CAS  PubMed  Google Scholar 

  29. Pannicke T, Iandiev I, Uckermann O, Biedermann B, Kutzera F, Wiedemann P, Wolburg H, Reichenbach A, Bringmann A (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26:493–502

    Article  CAS  PubMed  Google Scholar 

  30. Iandiev I, Uckermann O, Pannicke T, Wurm A, Tenckhoff S, Pietsch UC, Reichenbach A, Wiedemann P, Bringmann A, Uhlmann S (2006) Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci 47:2161–2171

    Article  PubMed  Google Scholar 

  31. Cohen T, Nahari D, Cerem LW, Neufeld G, Levin BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271(2):736–741

    Article  CAS  PubMed  Google Scholar 

  32. Chong DY, Boehlke CS, Zheng QD, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49:3193–3200

    Article  PubMed Central  PubMed  Google Scholar 

  33. Namekata K, Harada C, Guo X (2009) Interleukin-1 attenuates normal tension glaucoma-like retinal degeneration in EAAC1-deficient mice. Neurosci Lett 465:160–164

    Article  CAS  PubMed  Google Scholar 

  34. Silva KC, Pinto CC, Biswas SK, de Faria JB, de Faria JM (2007) Hypertension increases retinal inflammation in experimental diabetes: a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr Eye Res 32:533–541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Deutsche Forschungsgemeinschaft (KO 1547/6-1, GRK 1097/1). The authors wish to thank Ute Weinbrecht and Franziska Rickers for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interests to disclose. The authors have full control of all primary data and they agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matus Rehak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köferl, P., Hollborn, M., Rehak, J. et al. Effects of arteriolar constriction on retinal gene expression and Müller cell responses in a rat model of branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 252, 257–265 (2014). https://doi.org/10.1007/s00417-013-2532-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2532-z

Keywords

Navigation