Skip to main content

Advertisement

Log in

Increased intravitreal angiopoietin-2 levels associated with rhegmatogenous retinal detachment

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore factors related to pathogenesis of rhegmatogenous retinal detachment (RRD) and development of proliferative vitreoretinopathy (PVR), vitreous levels of angiopoietin-1 and −2 (Ang-1 and −2), previously undefined in RRD, transforming growth factor-(TGF) β1, vascular endothelial growth factor (VEGF), erythropoietin (EPO) and proteolytic mediators of extracellular matrix remodelling (MMP-2 and −9) were compared in eyes with RRD and eyes with idiopathic macular hole or pucker.

Methods

Vitreous samples were collected from 117 eyes with RRD (study group) and 40 eyes with macular hole or pucker (control group). Growth factors were measured by ELISA and matrix metalloproteinases (MMPs) by gelatin zymography.

Results

The mean vitreous concentrations of Ang-2, MMP-2, and MMP-9 were higher (all p < 0.01), whereas concentration of VEGF was lower (p = 0.01) in eyes with RRD relative to controls. Logistic regression analysis identified Ang-2 concentration as a novel marker of RRD (p = 0.0001, OR 48.7). Ang-1, EPO, and total TGF-β1 levels were not significantly different between the groups. However, TGF-β1 and MMP-2 were increased in eyes with total RRD compared to those with local RRD (p ≤ 0.05). In eyes with PVR, no differences were observed in any studied marker as compared with non-PVR eyes.

Conclusions

Current results reveal Ang-2 as a key factor upregulated in RRD. It may co-operate with fibrosis-associated factors and contribute to vascular complications such as breakdown of blood–eye barrier and PVR development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis GP, Guerin CJ, Anderson DH, Matsumoto B, Fisher SK (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 118:368–376

    CAS  PubMed  Google Scholar 

  2. Cook B, Lewis GP, Fisher SK, Adler R (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 36:990–996

    CAS  PubMed  Google Scholar 

  3. Mitry D, Fleck BW, Wright AF, Campbell H, Charteris DG (2010) Pathogenesis of rhegmatogenous retinal detachment — predisposing anatomy and cell biology. Retina 30:1561–1572

    Article  PubMed  Google Scholar 

  4. Lo ACY, Woo TTY, Wong RLM, Wong D (2011) Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica 226(suppl 1):10–17

    Article  PubMed  Google Scholar 

  5. Hui YH, Goodnight R, Zhang XJ, Sorgente N, Ryan SJ (1988) Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 106:1280–1285

    Article  CAS  PubMed  Google Scholar 

  6. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118:445–450

    CAS  PubMed  Google Scholar 

  7. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  CAS  PubMed  Google Scholar 

  8. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol 133:851–852

    Article  CAS  PubMed  Google Scholar 

  9. Kvanta A (2006) Ocular angiogenesis: the role of growth factors. Review article. Acta Ophthalmol Scand 84:282–288

    Article  CAS  PubMed  Google Scholar 

  10. Rasier R, Gormus U, Artunay O, Yuzbasioglu E, Oncel M, Bahcecioglu H (2010) Vitreous levels of VEGF, IL-8, and TNF-alpha in retinal detachment. Curr Eye Res 35(6):505–509

    Article  CAS  PubMed  Google Scholar 

  11. Ricker LJAG, Diedonne SC, Kessels AG, Rennel ES, Berendschot TT, Hendrikse F, Kijlstra A, La Heij EC (2012) Antiangiogenic isoforms of vascular endothelial growth factor predominate in subretinal fluid of patients with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Retina 32(1):54–59

    Article  CAS  PubMed  Google Scholar 

  12. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27(12):552–558

    Article  CAS  PubMed  Google Scholar 

  13. Tsanou E, Ioachim E, Stefaniotou M, Gorezis S, Charalabopoulos K, Bagli H, Peschos D, Psilas K, Agnantis NJ (2005) Immunohistochemical study of angiogenesis and proliferative activity in epiretinal membranes. Int J Clin Pract 59(10):1157–1161

    Article  CAS  PubMed  Google Scholar 

  14. Roberts A, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-β (TGF-β). Growth Factors 8:1–9

    Article  CAS  PubMed  Google Scholar 

  15. Sivak JM, Fini ME (2002) MMPs in the eye: emerging roles if or matrix metalloproteinases in ocular physiology. Prog Retin Eye Res 21:1–14

    Article  CAS  PubMed  Google Scholar 

  16. Brown D, Hamdi H, Bahri S, Kennedy MC (1994) Characterization of an endogenous metalloproteinase in human vitreous. Curr Eye Res 13:639–647

    Article  CAS  PubMed  Google Scholar 

  17. Abu El-Asrar AM, Dralands L, Veckeneer M, Geboes K, Missotten L, Van Aelst I, Opdenakker G (1998) Gelatinase B in proliferative vitreoretinal disorders. Am J Ophthalmol 125:844–851

    Article  CAS  PubMed  Google Scholar 

  18. De La Paz MA, Itoh Y, Toth CA, Nagase H (1998) Matrix metalloproteinases and their inhibitors in human vitreous. Invest Ophthalmol Vis Sci 39:1256–1260

    Google Scholar 

  19. Kosano H, Okano T, Katsura Y, Noritake M, Kado S, Matsuoka T, Nishigori H (1999) ProMMP-9 (92 kDa gelatinase) in vitreous fluid of patients with proliferative diabetic retinopathy. Life Sci 64:2307–2315

    Article  CAS  PubMed  Google Scholar 

  20. Das A, McGuire PG, Eriqat C, Ober RR, DeJuan E Jr, Williams GA, McLamore A, Biswas J, Johnson DW (1999) Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci 40:809–813

    CAS  PubMed  Google Scholar 

  21. Salzmann J, Limb GA, Khaw PT, Gregor ZJ, Webster L, Chignell AH, Charteris DG (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 84:1091–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jin M, Kashiwagi K, Iizuka Y, Tanaka Y, Imai M, Tsukahara S (2001) Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina 21:28–33

    Article  CAS  PubMed  Google Scholar 

  23. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44(5):2163–2170

    Article  PubMed  Google Scholar 

  24. Beránek M, Kolar P, Tschoplova S, Kankova K, Vasku A (2008) Genetic variations and plasma levels of gelatinase A (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol Vis 14(14):1114–1121

    PubMed Central  PubMed  Google Scholar 

  25. Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT (1998) A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39(8):1524–1529

    CAS  PubMed  Google Scholar 

  26. Symeonidis C, Diza E, Papakonstantinou E, Souliou E, Dimitrakos SA, Karakiulakis G (2007) Correlation of the extent and duration of rhegmatogenous retinal detachment with the expression of matrix metalloproteinases in the vitreous. Retina 27(9):1279–1285

    Article  PubMed  Google Scholar 

  27. Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol Scand 89(4):339–345

    Article  CAS  Google Scholar 

  28. Simo R, Carrasco E, Garcia-Remez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diab Rev 2:71–98

    Article  CAS  Google Scholar 

  29. Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1999) Deficient activation and different expression of transforming growth factor-beta isoforms in active proliferative diabetic retinopathy and neovascular eye disease. Exp Clin Endocrinol Diabetes 107:21–28

    Article  CAS  PubMed  Google Scholar 

  30. Kita T, Hata Y, Arita R, Kawahara S, Miura M, Nakao S, Mochizuki Y, Enaida H, Goto Y, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2008) Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc Natl Acad Sci U S A 105(45):17504–17509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Manzoni P, Maestri A, Gomirato G, Takagi H, Watanabe D, Matsui S (2005) Erythropoietin as a retinal angiogenic factor. N Engl J Med 353:2190–2191

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H (2005) Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 353:782–792

    Article  CAS  PubMed  Google Scholar 

  33. Caprara C, Grimm C (2012) From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119

    Article  CAS  PubMed  Google Scholar 

  34. Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Ceramil A, Brines M, Rosenbaum DM (2002) Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. PNAS 16:10659–10664

    Article  Google Scholar 

  35. Inomata Y, Hirata A, Takahashi E, Kawaji T, Fukushima M, Tanihara H (2004) Elevated erythropoietin in vitreous with ischemic retinal diseases. Neuroreport 15:877–879

    Article  CAS  PubMed  Google Scholar 

  36. Retina Society Terminology Committee (1991) An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 112:159–165

    Google Scholar 

  37. Saharinen P, Alitalo K (2011) The yin, the yang, and the angiopoietin-1. J Clin Invest 121(6):2157–2159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lohi J, Lehti K, Westermarck J, Kahari VM, Keski-Oja J (1996) Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur J Biochem 239(2):239–247

    Article  CAS  PubMed  Google Scholar 

  39. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99:11205–11210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  41. Nambu H, Nambu R, Oshima Y, Hackett SF, Okoye G, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA (2004) Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther 11(19):865–873

    Article  CAS  PubMed  Google Scholar 

  42. Thurston G, Rudge J, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  CAS  PubMed  Google Scholar 

  43. Kim I, Moon S-O, Park SK (2001) Angiopoietin-1 reduces VEGF-stimulated leucocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin Expression. Circ Res 89:477–479

    Article  CAS  PubMed  Google Scholar 

  44. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448:249–253

    Article  CAS  PubMed  Google Scholar 

  45. Brindle NPJ, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ganter MT, Cohen MJ, Brohi K, Chesebro BB, Staudenmayer KL, Rahn P, Christiaans SC, Bir ND, Pittet JF (2008) Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg 247(2):320–326

    Article  PubMed  Google Scholar 

  47. Sieczkiewicz GJ, Herman IM (2003) TGF-beta 1 signaling controls retinal pericyte cotractile protein expression. Microvasc Res 66:190–196

    Article  CAS  PubMed  Google Scholar 

  48. Hoerster R, Hermann MM, Rosentreter A, Muether PS, Kirchhof B, Fauser S (2013) Profibrotic cytokines in aqueous humor correlate with aqueous flare in patients with rhegmatogenous retinal detachment. Br J Ophthalmol 97:450–453

    Article  PubMed  Google Scholar 

  49. Pfeffer BA, Flanders KC, Guerin CJ (1994) Transforming growth factor beta2 is the predominant isoform in the neural retina, retinal pigment epithelium–choroid and vitreous of the monkey eye. Exp Eye Res 59:323–333

    Article  CAS  PubMed  Google Scholar 

  50. Gerhardinger C, Dagher Z, Sebastiani P, Park YS, Lorenzi M (2009) The transforming growth factor-[beta] pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes 58(7):1659–1667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Xie Z, Wu X, Qiu Q, Gong Y, Song Y, Gu Q, Li C (2007) Expression pattern of erythropoietin and erythropoietin receptor in experimental model of retinal detachment. Curr Eye Res 32:757–764

    Article  CAS  PubMed  Google Scholar 

  52. Wang ZY, Shen LJ, Zhao KK, Song ZM, Qu J (2009) Elevated erythropoietin in vitreous of patients with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Ophthalmic Res 42(3):138–140

    Article  CAS  PubMed  Google Scholar 

  53. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui T-G, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835

    Article  CAS  PubMed  Google Scholar 

  54. Shitama T, Hayashi H, Noge S (2008) Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin Appl 2(9):1265–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by scientific grants from the Finnish Eye Foundation, The Eye and Tissue Bank Foundation, the Mary and Georg C. Ehrnrooth Foundation, the Nissi Foundation, and HUCH Clinical Research Grants (TKK4150 and TYH1325).

Disclosure

None to all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirpa Loukovaara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loukovaara, S., Lehti, K., Robciuc, A. et al. Increased intravitreal angiopoietin-2 levels associated with rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 252, 881–888 (2014). https://doi.org/10.1007/s00417-013-2508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2508-z

Keywords

Navigation