Skip to main content

Advertisement

Log in

Electroretinographic assessment of retinal function during acute exposure to normobaric hypoxia

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The current study aimed to investigate retinal function during exposure to normobaric hypoxia.

Methods

Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) using an extended ISCEV protocol was applied to explore intensity–response relationship in dark- and light- adapted conditions in 13 healthy volunteers (mean age 25 ± 3 years). Baseline examinations were performed under atmospheric air conditions at 341 meters above sea level (FIO2 of 21 %), and were compared to hypoxia (FIO2 of 13.2 %) by breathing a nitrogen-enriched gas mixture for 45 min. All subjects were monitored using infrared oximetry and blood gas analysis.

Results

The levels of PaCO2 changed from 38.4 ± 2.7 mmHg to 36.4 ± 3.0 mmHg, PaO2 from 95.5 ± 1.9 mmHg to 83.7 ± 4.6 mmHg, and SpO2 from 100 ± 0 % to 87 ± 4 %, from baseline to hypoxia respectively. A significant decrease (p < 0.05) was found for saturation amplitude of the dark-adapted b-wave intensity–response function (Vmax), dark-adapted a- and b-wave amplitudes of combined rod and cone responses (3 and 10 cd.s/m2), light-adapted b-wave amplitudes of single flash (3 and 10 cd.s/m2), and flicker responses (5–45 Hz) during hypoxia compared to baseline, without changes in implicit times. The a-wave slope of combined rod and cone responses (3 and 10 cd.s/m2) and the oscillatory potentials were significantly lower during hypoxia (p < 0.05). A isolated light-adapted ON response (250 ms flash) showed a reduction of amplitudes at hypoxia (p < 0.05), but no changes were observed for the OFF response.

Conclusions

The results show significant impairment of retinal function during simulated normobaric short-term hypoxia affecting specific retinal cells of rod and cone pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baldwin JE, Krebs H (1981) The evolution of metabolic cycles. Nature 291:381–382

    Article  CAS  PubMed  Google Scholar 

  2. Fulton AB, Akula JD, Mocko JA, Hansen RM, Benador IY, Beck SC, Fahl E, Seeliger MW, Moskowitz A, Harris ME (2009) Retinal degenerative and hypoxic ischemic disease. Doc Ophthalmol 118:55–61

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ricci B, Calogero G (1988) Oxygen-induced retinopathy in newborn rats: effects of prolonged normobaric and hyperbaric oxygen supplementation. Pediatrics 82:193–198

    CAS  PubMed  Google Scholar 

  4. Ashton N (1966) Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am J Ophthalmol 62:412–435

    CAS  PubMed  Google Scholar 

  5. Caprara C, Grimm C (2012) From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119

    Article  CAS  PubMed  Google Scholar 

  6. Feigl B, Brown B, Lovie-Kitchin J, Swann P (2007) Functional loss in early age-related maculopathy: the ischaemia postreceptoral hypothesis. Eye (Lond) 21:689–696

    Article  CAS  Google Scholar 

  7. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747

    CAS  PubMed  Google Scholar 

  8. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299

    CAS  PubMed  Google Scholar 

  9. Miller JW, Le Couter J, Strauss EC, Ferrara N (2012) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120(1):106–114. doi:10.1016/j.ophtha.2012.07.038

    Article  PubMed  Google Scholar 

  10. Yamamoto S, Kamiyama M, Nitta K, Yamada T, Hayasaka S (1996) Selective reduction of the S cone electroretinogram in diabetes. Br J Ophthalmol 80:973–975

    Article  CAS  PubMed  Google Scholar 

  11. Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 30:1732–1737

    CAS  PubMed  Google Scholar 

  12. Breton ME, Quinn GE, Keene SS, Dahmen JC, Brucker AJ (1989) Electroretinogram parameters at presentation as predictors of rubeosis in central retinal vein occlusion patients. Ophthalmology 96:1343–1352

    Article  CAS  PubMed  Google Scholar 

  13. Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685

    Article  CAS  PubMed  Google Scholar 

  14. Moschos M, Brouzas D, Moschou M, Theodossiadis G (1999) The a- and b-wave latencies as a prognostic indicator of neovascularisation in central retinal vein occlusion. Doc Ophthalmol 99:123–133

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Wu D, Huang S, Yan H (2006) The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol 113:53–59

    Article  PubMed  Google Scholar 

  16. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  17. Gekeler F, Messias A, Ottinger M, Bartz-Schmidt KU, Zrenner E (2006) Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 47:4966–4974

    Article  PubMed  Google Scholar 

  18. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988

    CAS  PubMed  Google Scholar 

  19. Schatz A, Wilke R, Strasser T, Gekeler F, Messias A, Zrenner E (2011) Assessment of "non-recordable" electroretinograms by 9 Hz flicker stimulation under scotopic conditions. Doc Ophthalmol. doi:10.1007/s10633-011-9302-1

    PubMed  Google Scholar 

  20. Naka KI, Rushton WA (1968) S-potential and dark adaptation in fish. J Physiol 194:259–269

    CAS  PubMed  Google Scholar 

  21. Brown JL, Hill JH, Burke RE (1957) The effect of hypoxia on the human electroretinogram. Am J Ophthalmol 44:57–67

    CAS  PubMed  Google Scholar 

  22. Tinjust D, Kergoat H, Lovasik JV (2002) Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med 73:1189–1194

    PubMed  Google Scholar 

  23. Rimmer TJ, Smith MJ, Ogilvy AJ, McNally PG (1995) Effects of hypoxemia on the electroretinogram in diabetics. Doc Ophthalmol 91:311–321

    Article  PubMed  Google Scholar 

  24. Feigl B, Stewart I, Brown B (2007) Experimental hypoxia in human eyes: implications for ischaemic disease. Clin Neurophysiol 118:887–895

    Article  PubMed  Google Scholar 

  25. Feigl B, Stewart IB, Brown B, Zele AJ (2008) Local neuroretinal function during acute hypoxia in healthy older people. Invest Ophthalmol Vis Sci 49:807–813

    Article  PubMed  Google Scholar 

  26. Klemp K, Lund-Andersen H, Sander B, Larsen M (2007) The effect of acute hypoxia and hyperoxia on the slow multifocal electroretinogram in healthy subjects. Invest Ophthalmol Vis Sci 48:3405–3412

    Article  PubMed  Google Scholar 

  27. Kergoat H, Herard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427

    Article  PubMed  Google Scholar 

  28. Janaky M, Grosz A, Toth E, Benedek K, Benedek G (2007) Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol 114:45–51

    Article  PubMed  Google Scholar 

  29. Niess AM, Fehrenbach E, Lorenz I, Muller A, Northoff H, Dickhuth HH, Schneider EM (2004) Antioxidant intervention does not affect the response of plasma erythropoietin to short-term normobaric hypoxia in humans. J Appl Physiol 96:1231–1235

    Article  CAS  PubMed  Google Scholar 

  30. Linsenmeier RA (1990) Electrophysiological consequences of retinal hypoxia. Graefes Arch Clin Exp Ophthalmol 228:143–150

    CAS  PubMed  Google Scholar 

  31. Brunette JR, Olivier P, Zaharia M, Blondeau P, Lafond G (1986) Rod–cone differences in response to retinal ischemia in rabbit. Doc Ophthalmol 63:359–365

    Article  CAS  PubMed  Google Scholar 

  32. Zaghloul KA, Boahen K, Demb JB (2003) Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23:2645–2654

    CAS  PubMed  Google Scholar 

  33. Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22:2737–2747

    CAS  PubMed  Google Scholar 

  34. Vardi N, Matesic DF, Manning DR, Liebman PA, Sterling P (1993) Identification of a G-protein in depolarizing rod bipolar cells. Vis Neurosci 10:473–478

    Article  CAS  PubMed  Google Scholar 

  35. Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197

    Article  CAS  PubMed  Google Scholar 

  36. Sealey KG, Rubuck AS, Campbell EJ (1975) Oxygenated mixed venous PCO2 in healthy subjects. Can Med Assoc J 113:1047–1050

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants for their patience and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gekeler.

Additional information

This study was not supported by any organization, and therefore the authors had no financial relationships.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatz, A., Breithaupt, M., Hudemann, J. et al. Electroretinographic assessment of retinal function during acute exposure to normobaric hypoxia. Graefes Arch Clin Exp Ophthalmol 252, 43–50 (2014). https://doi.org/10.1007/s00417-013-2504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2504-3

Keywords

Navigation