Skip to main content

Advertisement

Log in

Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human keratocytes in vitro

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Photodynamic inactivation (PDI) may be a potential alternative in cases of therapy-resistant infectious keratitis. The purpose of our study was to determine the impact of PDI using the photosensitizer chlorin e6 (Ce6) on viability, apoptosis, and proliferation of human keratocytes, in vitro.

Methods

Primary human keratocytes were isolated by digestion in collagenase (1 mg/ml) from human corneal buttons, and cultured in DMEM/Ham’s F12 medium supplemented with 10 % FCS. Keratocyte cell cultures underwent illumination using red (670 nm) light for 13 min following exposure to 50 nM to 64 μM concentrations of Ce6 in the culture medium. Twenty-four hours after PDI, cell viability was evaluated by the Alamar blue assay, total DNA content of the cells and apoptosis using the APO-DIRECT™ Kit, and cell proliferation by the BrdU Cell Proliferation Assay Kit.

Results

Using Ce6 or illumination only, we did not detect significant changes of cell viability, apoptosis, and proliferation. Using illumination, viability of keratocytes decreased significantly above 100 nM (P < 0.01), and proliferation at 250 nM Ce6 concentration (P = 0.01) and the percentage of apoptotic keratocytes increased significantly at 500 nM (P < 0.01) concentration.

Conclusions

In the short term, photodynamic inactivation using Ce6 decreases viability and proliferation, and also triggers apoptosis of human keratocytes, in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones DB (1981) Decision-making in the management of microbial keratitis. Ophthalmology 88:814–820

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  CAS  PubMed  Google Scholar 

  3. Moore C, Wallis C, Melnick JL, Kuns MD (1972) Photodynamic treatment of herpes keratitis. Infect Immun 5:169–171

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Ito T (1981) Photodynamic action of hematoporphyrin on yeast cells - a kinetic approach. Photochem Photobiol 34:521–524

    Google Scholar 

  5. Li Z, Jhanji V, Tao X, Yu H, Chen W, Mu G (2013) Riboflavin/ultraviolet light-mediated crosslinking for fungal keratitis. Br J Ophthalmol 97:669–671

    Article  PubMed  Google Scholar 

  6. Fimple JL, Fontana CR, Foschi F, Ruggiero K, Song X, Pagonis TC, Tanner AC, Kent R, Doukas AG, Stashenko PP, Soukos NS (2008) Photodynamic treatment of endodontic polymicrobial infection in vitro. J Endod 34:728–734

    Article  PubMed Central  PubMed  Google Scholar 

  7. Martins SA, Combs JC, Noguera G, Camacho W, Wittmann P, Walther R, Cano M, Dick J, Behrens A (2008) Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci 49:3402–3408

    Article  PubMed  Google Scholar 

  8. Khan YA, Kashiwabuchi RT, Martins SA, Castro-Combs JM, Kalyani S, Stanley P, Flikier D, Behrens A (2011) Riboflavin and ultraviolet light a therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis: report of 3 cases. Ophthalmology 118:324–331

    Article  PubMed  Google Scholar 

  9. Goto B, Iriuchishima T, Horaguchi T, Tokuhashi Y, Nagai Y, Harada T, Saito A, Aizawa S (2011) Therapeutic effect of photodynamic therapy using Na-pheophorbide a on osteomyelitis models in rats. Photomed Laser Surg 29:183–189

    Article  CAS  PubMed  Google Scholar 

  10. Roberts WG, Shiau FY, Nelson JS, Smith KM, Berns MW (1988) In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy. J Natl Cancer Inst 80:330–336

    Article  CAS  PubMed  Google Scholar 

  11. Kostenich GA, Zhuravkin IN, Furmanchuk AV, Zhavrid EA (1993) Sensitivity of different rat tumour strains to photodynamic treatment with chlorin e6. J Photochem Photobiol B 17:187–194

    Article  CAS  PubMed  Google Scholar 

  12. Kostenich GA, Zhuravkin IN, Zhavrid EA (1994) Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors. J Photochem Photobiol B 22:211–217

    Article  CAS  PubMed  Google Scholar 

  13. Moon YH, Kwon SM, Kim HJ, Jung KY, Park JH, Kim SA, Kim YC, Ahn SG, Yoon JH (2009) Efficient preparation of highly pure chlorin e6 and its photodynamic anti-cancer activity in a rat tumor model. Oncol Rep 22:1085–1091

    CAS  PubMed  Google Scholar 

  14. Wang J, Stachon T, Eppig T, Langenbucher A, Seitz B, Szentmary N (2013) Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human corneal endothelial cells. Graefes Arch Clin Exp Ophthalmol 251:1199–1204

    Article  CAS  PubMed  Google Scholar 

  15. Seitz B, Hayashi S, Wee WR, LaBree L, McDonnell PJ (1996) In vitro effects of aminoglycosides and fluoroquinolones on keratocytes. Invest Ophthalmol Vis Sci 37:656–665

    CAS  PubMed  Google Scholar 

  16. Cubitt CL, Tang Q, Monteiro CA, Lausch RN, Oakes JE (1993) IL-8 gene expression in cultures of human corneal epithelial cells and keratocytes. Invest Ophthalmol Vis Sci 34:3199–3206

    CAS  PubMed  Google Scholar 

  17. Finke M, Bleses K, Winkler K, Wang J, Szentmáry N, Eppig T, Foth H-J, Hüttenberger D, Langenbucher A, Seitz B, Bischoff M (2012) Die photodynamische Therapie: eine neue Perspektive für die Behandlung der bakteriell induzierten infektiösen Keratitis. Ophthalmologe 109(suppl 1):59, abstract PDo06-046

    Google Scholar 

  18. Wong TW, Tracy E, Oseroff AR, Baumann H (2003) Photodynamic therapy mediates immediate loss of cellular responsiveness to cytokines and growth factors. Cancer Res 63:3812–3818

    CAS  PubMed  Google Scholar 

  19. Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21

    Article  CAS  PubMed  Google Scholar 

  20. Lavie G, Kaplinsky C, Toren A, Aizman I, Meruelo D, Mazur Y, Mandel M (1999) A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy. Br J Cancer 79:423–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kessel D, Poretz RD (2000) Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME). Photochem Photobiol 71:94–96

    Article  CAS  PubMed  Google Scholar 

  22. Wollensak G, Sporl E, Seiler T (2003) Treatment of keratoconus by collagen cross linking. Ophthalmologe 100:44–49

    Article  CAS  PubMed  Google Scholar 

  23. Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S (2012) UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol 250:95–102

    Article  CAS  PubMed  Google Scholar 

  24. Price MO, Tenkman LR, Schrier A, Fairchild KM, Trokel SL, Price FW Jr (2012) Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg 28:706–713

    Article  PubMed  Google Scholar 

  25. Wollensak G, Spoerl E, Reber F, Seiler T (2004) Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond) 18:718–722

    Article  CAS  Google Scholar 

  26. Mencucci R, Marini M, Paladini I, Sarchielli E, Sgambati E, Menchini U, Vannelli GB (2010) Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol 38:49–56

    Article  Google Scholar 

Download references

Acknowledgments

We thank the supports of the China Scholarship Council (CSC) for the author’s study (J Wang), and the Alexander von Humboldt Foundation for supporting the work of Dr. N. Szentmáry at the Department of Ophthalmology of Saarland University, Homburg/Saar, Germany. This project was also supported by “Zentrales Innovationsprogramm Mittelstand (ZIM)” of the German Federal Ministry of Economics and Technology (grant number: KF2152004MD0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Stachon, T., Eppig, T. et al. Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human keratocytes in vitro. Graefes Arch Clin Exp Ophthalmol 251, 2725–2731 (2013). https://doi.org/10.1007/s00417-013-2470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2470-9

Keywords

Navigation