IL-1α, IL-1β, IL-6, and IL-8 secretion of human keratocytes following photodynamic inactivation (PDI) in vitro

  • Tanja StachonEmail author
  • Jiong Wang
  • Achim Langenbucher
  • Timo Eppig
  • Markus Bischoff
  • Berthold Seitz
  • Nóra Szentmáry



With increasing resistance of microorganisms to antibiotics, photodynamic inactivation (PDI) may also be a potential therapeutic option in infectious keratitis. As part of the inflammatory response in infectious keratitis, keratocytes produce various interleukins. The purpose of this study was to evaluate the potential anti-inflammatory effect of PDI, analyzing interleukin-1 alpha (IL-1α), interleukine-1 beta (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) secretion of human keratocytes following PDI, in vitro.


Primary human keratocytes were isolated by digestion in collagenase A (1.0 mg/ml) from human corneal buttons, and cultured in DMEM/Ham’s F12 medium supplemented with 10 % FCS. Keratocyte cell cultures underwent illumination using red (670 nm) light for 13 min following exposure to 100 nM concentration of the photosensitizer chlorin e6 (Ce6) in the culture medium. Five and 24 hours after PDI, secretion of IL-1α, IL-1β, IL-6, and IL-8 was measured by enzyme-linked immunoabsorbent assay (ELISA).


The secretion of IL-1α was under the measurement limit in treated and untreated cell cultures 5 and 24 h after PDI. Compared to untreated controls, IL-6 and IL-8 secretion of keratocytes decreased (p < 0.05 and 0.0001) significantly 5 hours after PDI, whereas IL-1β secretion remained unchanged. Twenty-four hours after PDI, secretion of IL-1β, IL-6, and IL-8 did not differ significantly from untreated controls.


In the short term, PDI does not have an impact on IL-1α and IL-1β secretion of keratocytes, in vitro. Photodynamic inactivation inhibits IL-6 and IL-8 secretion of keratocytes transiently (5 h), which normalizes 24 h following treatment. Through the short-term impact of chlorine e6-PDI on IL-6 and IL-8 secretion, PDI may inhibit the inflammatory cascade in at least keratocyte cultures.


Photodynamic inactivation Human keratocytes Chlorin e6 IL-1α IL-1β IL-6 IL-8 Cell culture 



We are thankful for the support of the China Scholarship Council (CSC) (J. Wang) and the Alexander von Humboldt Foundation (Dr. N. Szentmáry). This project was also supported by “Zentrales Innovationsprogram Mittelstand (ZIM)” of the German Federal Ministry of Economics and Technology (grant number: KF2152004MD0), Germany.

Conflict of interest

None of the authors have any financial conflict of interest.


  1. 1.
    Mitton D, Ackroyd R (2008) A brief overview of photodynamic therapy in Europe. Photodiagnosis Photodyn Ther 5:103–111PubMedCrossRefGoogle Scholar
  2. 2.
    Szentmáry N, Goebels S, Bischoff M, Seitz B (2012) Photodynamische Therapie bei infektiöser Keratitis. Ophthalmologe 109:165–170PubMedCrossRefGoogle Scholar
  3. 3.
    Lambrechts SA, Schwartz KR, Aalders MC, Dankert JB (2005) Photodynamic inactivation of fibroblasts by a cationic porphyrin. Lasers Med Sci 20:62–67PubMedCrossRefGoogle Scholar
  4. 4.
    Szentmáry N, Stachon T, Wang J, Eppig T, Langenbucher A, Seitz B (2012) Photodynamic inactivation (PDI) triggers expression of haemapoetic stem cell marker CD34 of keratocytes. Invest Ophthalmol Vis Sci 53, E-Abstract 1078Google Scholar
  5. 5.
    Wang J, Stachon T, Eppig T, Langenbucher A, Seitz B, Szentmáry N (2012) Impact of photodynamic inactivation (PDI) on viability, apoptosis and proliferation of human keratocytes in vitro. Invest Ophthalmol Vis Sci 53, E-Abstract 1092Google Scholar
  6. 6.
    Stachon T, Wang J, Eppig T, Langenbucher A, Bischoff T, Seitz B, Szentmáry N (2013) KGF, FGFb, VEGF, HGF and TGFβ1 secretion of human keratocytes following photodynamic inactivation (PDI). Graefes Arch Clin Exp Ophthalmol 251:1987–1993PubMedCrossRefGoogle Scholar
  7. 7.
    Matsumoto K, Ikema K, Tanihara H (2005) Role of cytokines and chemokines in pseudomonal keratitis. Cornea 24:43–48CrossRefGoogle Scholar
  8. 8.
    Wilson SE, Schultz GS, Chegini N, Weng J, He YG (1994) Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, basic fibroblast growth factor and interleukin-1 protein in the cornea. Exp Eye Res 59:63–71PubMedCrossRefGoogle Scholar
  9. 9.
    Barbosa FL, Chaurasia SS, Kaur H, de Medeiros FW, Agrawal V, Wilson SE (2010) Stromal interleukin-1 expression in the cornea after haze-associated injury. Exp Eye Res 91:456–461PubMedCrossRefGoogle Scholar
  10. 10.
    Weng J, Mohan RR, Li Q, Wilson SE (1997) IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultures stromal fibroblast cells: interleukin-1β expression in the cornea. Cornea 16:465–471PubMedCrossRefGoogle Scholar
  11. 11.
    Kimura K, Orita T, Nomi N, Fujitsu Y, Nishida T, Sonoda K-H (2012) Identification of common secreted factors in human corneal fibroblasts exposed to LPS, poly(I:C), or zymosan. Exp Eye Res 96:157–162PubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi H, Ishida-Yamamoto A, Nakajimi S, Sakata I, Iizuka H (2008) ARX-S10(Na)-photodynamic therapy inhibits cytokine secretion and proliferation of lymphocytes. J Dermatol Sci 49:174–177PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang X, Wu X, Gao L (2011) Pretreatment with lipopolysaccharide modulates innate immunity in corneal fibroblasts challenged with Aspergillus fumigatus. Innate Immun 17:237–244CrossRefGoogle Scholar
  14. 14.
    Kumagai N, Fukuda K, Fijutsu Y, Lu Y, Chikamato N, Nishida T (2005) Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci 46:114–120PubMedCrossRefGoogle Scholar
  15. 15.
    Fenton RR, Molesworth-Kenyon S, Oakes JE, Lausch RN (2002) Linkage of IL-6 with neutrophil chemoattractant expression in virus-induced ocular inflammation. Invest Ophthalmol Vis Sci 43:737–743PubMedGoogle Scholar
  16. 16.
    Cole N, Krockenberger M, Bao S, Beagley KW, Husband AJ, Willcox M (2001) Effects of exogenous interleukin-6 during Pseudomonas aeruginosa corneal infection. Infect Immun 69:4116–4119PubMedCrossRefGoogle Scholar
  17. 17.
    Contreras-Ruiz L, Schulze U, García-Posadas L, Arranz-Valsero I, López-García A, Paulsen F, Diebold Y (2012) Structural and functional alteration of corneal epithelial barrier under inflammatory conditions. Curr Eye Res 37:971–981PubMedCrossRefGoogle Scholar
  18. 18.
    Yamaura M, Yoa M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41:282–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tanja Stachon
    • 1
    Email author
  • Jiong Wang
    • 1
    • 2
  • Achim Langenbucher
    • 3
  • Timo Eppig
    • 3
  • Markus Bischoff
    • 4
  • Berthold Seitz
    • 1
  • Nóra Szentmáry
    • 1
  1. 1.Department of OphthalmologySaarland University Medical CenterHomburgGermany
  2. 2.Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanChina
  3. 3.Experimental OphthalmologySaarland UniversityHomburgGermany
  4. 4.Institute of Medical Microbiology and HygieneSaarland University Medical CenterHomburgGermany

Personalised recommendations