Skip to main content

Advertisement

Log in

The effect of age and cataract surgery on macular pigment optic density: a cross-sectional, comparative study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To analyze the effects of age, cataract surgery and postoperative period on macular pigment optical density (MPOD).

Methods

The study included cases referred to Ankara University Department of Ophthalmology, between April and June 2012, who had a transparent natural lens or had undergone cataract surgery at least a year ago with their best corrected visual acuity of ≥ 0.5 based on Snellen chart. Presence of an ocular disease that might affect lens, retina and optic nerve (cataract, macular degeneration, diabetic retinopathy, glaucoma etc.), cataract surgery within the previous year, light-colored iris, smoking and use of micronutrition supplementation were determined as exclusion criteria. After detailed opthalmologic examination of all patients, they were divided into three groups based on their age and their lens status as: group 1, patients < 50 years of age having a clear lens; group 2, patients > 50 years of age having a clear lens; and group 3, patients > 50 years of age who had cataract surgery. Age, gender, and postoperative period of the patients as well as the MPOD values of the eyes measured with heterochromatic flicker photometric (HFP) method (MacularMetricsTM) were included in the analysis.

Results

Sixty-eight eyes of 37 cases with a mean age of 53.4 ± 15.3 years were enrolled in the study. Group 1 included 20 eyes of 10 cases (mean age 29.4 ± 9.5); group 2 included 32 eyes of 16 cases (mean age 60.3 ± 6.8); and group 3 included 16 eyes of 11 cases (mean age 65.2 ± 9.7). The mean macular pigment optical density value of all cases was 0.511 ± 0.192 log unit, while the mean MPOD values of groups 1, 2 and 3 were 0.570 ± 170, 0.528 ± 203 and 0.400 ± 180 log units, respectively. The mean MPOD values of the patients with clear lens aged < 50 and aged > 50 years did not reveal a statisticially significant difference (p = 1). However, the mean MPOD value of the cataract surgery group (group 3) was found to be statistically significantly lower than the group 1 and group 2 (p = 0.022, p = 0.039, respectively). The correlations between MPOD values and postoperative periods of the patients in group 3 showed that a decrease in MPOD values in parallel with duration of the postoperative period and this negative correlation was found to be statistically significant (r: −0.66, p = 0.005).

Conclusion

Our study has demonstrated that a significant correlation does not exist between age of the patients and MPOD values. MPOD values were lower than age-matched patients who had undergone cataract surgery and finally an inverse correlation existed between duration of the postoperative period after cataract surgery and MPOD values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and anti-oxidant vitamins. Am J Clin Nutr 62:1448–1461

    Google Scholar 

  2. Beatty S, Boulton M, Henson D, Koh HH, Murray IJ (1999) Macular pigment and age-related macular degeneration. Br J Ophthalmol 83:867–877

    Article  CAS  PubMed  Google Scholar 

  3. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  4. De La Paz M, Anderson RE (1992) Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Investig Ophthalmol Vis Sci 33:3497–3499

    Google Scholar 

  5. Snodderly DM, Brown PK, Delori FC, Auran JD (1984) The macular pigment. I. absorbance spectra, localization and discrimination from other yellow pigments in primate retinas. Investig Ophthalmol Vis Sci 25:660–673

    CAS  Google Scholar 

  6. Desmettre T, Lecerf JM, Souied EH (2004) Nutrition and age-related macular degeneration. J Fr Ophtalmol 27:3S38–3S56

    CAS  PubMed  Google Scholar 

  7. Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64:211–218

    Article  CAS  PubMed  Google Scholar 

  8. Johnson EJ, Neuringer M, Russel RM, Schalch W, Snodderly DM (2005) Nutritional manipulation of primate retinas, III: effects of lutein and zeaxanthin supplementation on addipose tissue and retina of xanthophyllo-free monkeys. Investig Ophthalmol Vis Sci 46:692–702

    Article  Google Scholar 

  9. Malinow MR, Feeney-Burns L, Peterson LH, Klein ML, Neuringer M (1980) Diet-related macular anomalies in monkeys. Investig Ophthalmol Vis Sci 19:857–863

    CAS  Google Scholar 

  10. Bone RA, Landrum JT, Hime GW, Cains A, Zamor J (1993) Stereochemistry of the human macular carotenoids. Investig Ophthalmol Vis Sci 34:2033–2040

    CAS  Google Scholar 

  11. Neuringer M, Sandstrom MM, Johnson EJ, Snodderly DM (2004) Nutritional manipulation of primate retinas, I: effects of lutein and zeaxanthin supplements on serum and macular pigment in xanthophyll-free rhesus monkeys. Investig Ophthalmol Vis Sci 45:3234–3243

    Article  Google Scholar 

  12. Bone RA, Landrum JT, Fernandez L, Tarsis SL (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Investig Ophthalmol Vis Sci 29:843–849

    CAS  Google Scholar 

  13. Snodderly DM, Auran JD, Delori FC (1984) The macular pigment. II. Spatial distribution in primate retinas. Investig Ophthalmol Vis Sci 25:674–685

    CAS  Google Scholar 

  14. Trieschmann M, van Kuijk FJ, Alexander R, Hermans P, Luthert P, Bird AC, Pauleikhoff D (2008) Macular pigment in the human retina: histological evaluation of localization and distribution. Eye 22:132–137

    Article  CAS  PubMed  Google Scholar 

  15. Junghans A, Sies H, Stahl W (2001) Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys 391:160–164

    Article  CAS  PubMed  Google Scholar 

  16. Fletcher AE (2010) Free radicals, antioxidants an deye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration. Ophthalmic Res 44:191–198

    Article  CAS  PubMed  Google Scholar 

  17. Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, Kepmen J, Taylor HR, Mitchell P, Eye Diseases Prevalence Research Group (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122:477–485

    Article  PubMed  Google Scholar 

  18. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617

    Article  CAS  PubMed  Google Scholar 

  19. Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE (2001) Macular pigment in donor eyes with and without AMD: a case–control study. Investig Ophthalmol Vis Sci 42:235–240

    CAS  Google Scholar 

  20. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investig Ophthalmol Vis Sci 42:439–446

    CAS  Google Scholar 

  21. Berendschot TT, Willemse-Assink JJ, Bastiaanse M, de Jong PT, van Norren D (2002) Macular pigment and melanin in age-related maculopathy in a general population. Investig Ophthalmol Vis Sci 43:1928–1932

    Google Scholar 

  22. Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellerman W (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109:1780–1787

    Article  PubMed Central  PubMed  Google Scholar 

  23. Obana A, Hiramistu T, Gohto Y, Ohira A, Mizuno S, Hirano T, Bernstein PS, Fujii H, Iseki K, Tanito M, Hotta Y (2008) Macular carotenoid levels of normal subjects and age related maculopathy patients in Japanese population. Ophthalmology 115:147–157

    Article  PubMed  Google Scholar 

  24. Kaya S, Weigert G, Pemp B, Sacu S, Werkmeister RM, Dragostinoff N, Garhöfer G, Schmidt-Erfurth U, Schmetterer L (2012) Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects-a study using spectrak fundus reflectance. Acta Ophthalmol 90:399–403

    Article  Google Scholar 

  25. Hammond BR Jr, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Investig Ophthalmol Vis Sci 41:1492–1497

    Google Scholar 

  26. Mellerio J, Ahmadi-Lari S, van Kuijk F, Pauleikhoff D, Bird A, Marshall J (2002) A portable instrument for measuring macular pigment with central fixation. Curr Eye Res 25:37–47

    Article  CAS  PubMed  Google Scholar 

  27. Nolan JM, Kenny R, O’Regan C, Cronin H, Loughman J, Connolly EE, Kearney P, Loane E, Beatty S (2010) Macular pigment optical density in an ageing Irish population: the Irish Longitudinal Study on Ageing. Ophthalmic Res 44:131–139

    Article  PubMed  Google Scholar 

  28. Obana A, Tanito M, Gohto Y, Gellerman W, Okazaki S, Ohira A (2011) Macular pigment changes in pseudophakic eyes quantified with resonance Raman spectroscopy. Ophthalmology 118:1852–1858

    Article  PubMed  Google Scholar 

  29. Delori FC, Goger DG, Hammond BR, Snodderly DM, Burns SA (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A Opt Image Sci Vis 18:1212–1230

    Article  CAS  PubMed  Google Scholar 

  30. Ciulla TA, Hammond BR Jr (2004) Macular pigment density and aging, assessed in the normal elderly and those with cataracts and age-related macular degeneration. Am J Ophthalmol 138:582–587

    Article  PubMed  Google Scholar 

  31. Berendschot TT, van Norren D (2005) On the age dependency of the macular pigment optical density. Exp Eye Res 81:602–609

    Article  CAS  PubMed  Google Scholar 

  32. Krohn DL, Asbell P, Ullian K, Katz S (1981) Relative blue-light extinction in lens nucleus related to age and cataract. Am J Ophthalmol 91:598–602

    CAS  PubMed  Google Scholar 

  33. Mellerio J (1987) Yellowing of the human lens: nuclear and cortical contributions. Vis Res 27:1581–1587

    Article  CAS  PubMed  Google Scholar 

  34. Liu IY, White L, LaCroix AZ (1989) The association of age-related macular degeneration and lens opacities in the aged. Am J Public Health 79:765–769

    Article  CAS  PubMed  Google Scholar 

  35. Wegner A, Khoramnia R (2011) Cataract is a self-defence reaction to protect the retina from oxidative damage. Med Hypotheses 76:741–744

    Article  CAS  PubMed  Google Scholar 

  36. Klein R, Klein BE, Wong TY, Tomany SC, Cruickshanks KJ (2002) The association of cataract and cataract surgery with long-term incidence of age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 120:1551–1558

    Article  PubMed  Google Scholar 

  37. Wang JJ, Klein R, Smith W, Klein BEK, Tomany S, Mitchell P (2003) Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam Eye Studies. Ophthalmology 110:1960–1967

    Article  PubMed  Google Scholar 

  38. Chew EY, Sperduto RD, Milton RC, Clemons TE, Gensler GR, Bressler SB, Klein R, Klein BE, Ferris FL 3rd (2009) Risk of advanced age-related macular degeneration after cataract surgey in the Age-Related Eye Disease Study: AREDS report 25. Ophthalmology 116:297–303

    Article  PubMed Central  PubMed  Google Scholar 

  39. Sutter FK, Menghini M, Berthelmes D, Fleischhauer JC, Kurz-Levin MM, Bosch MM, Helbig H (2007) Is pseudophakia a risk factor for neovascular age-related macular degeneration? Investig Ophthalmol Vis Sci 48:1472–1475

    Article  Google Scholar 

  40. Baatz H, Darawsha R, Ackermann H, Scharioth GB, de Ortueta D, Pavlidis M, Hattenbach LO (2008) Phacoemulsification does not induce neovascular age-related macular degeneraton. Investig Ophthalmol Vis Sci 49:1079–1083

    Article  Google Scholar 

  41. Gaillard ER, Zheng L, Merriam JC, Dillon J (2000) Age-related changes in the absorption characteristics of the primate lens. Investig Ophthalmol Vis Sci 41:1454–1459

    CAS  Google Scholar 

  42. Brockmann C, Schulz M, Laube T (2008) Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses. J Cataract Refract Surg 34:1161–1166

    Article  PubMed  Google Scholar 

  43. Nolan JM, O’Reilly P, Loughman J, Stack J, Loane E, Connolly E, Beatty S (2009) Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery. Investig Ophthalmol Vis Sci 50:4777–4785

    Article  Google Scholar 

  44. Bone RA, Landrum JT, Cains A (1992) Optical-density spectra of the macular pigment in vivo and in vitro. Vis Res 32:105–110

    Article  CAS  PubMed  Google Scholar 

  45. Liem AT, Keunen JE, van Norren D (1996) clinical applications of fundus reflection densitometry. Surv Ophthalmol 41:37–50

    Article  CAS  PubMed  Google Scholar 

  46. Wooten BR, Hammond BR Jr, Land RI, Snodderly MD (1999) A practical method for measuring macular pigment optical density. Investig Ophthalmol Vis Sci 40:2481–2489

    CAS  Google Scholar 

  47. Bernstein PS, Balashov NA, Tsong ED, Rando RR (1997) Retinal tubulin binds macular carotenoids. Investig Ophthalmol Vis Sci 38:167–175

    CAS  Google Scholar 

  48. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS (2004) Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279:49447–49454

    Article  CAS  PubMed  Google Scholar 

  49. Bhosale P, Li Bi Sharifzadeh M, Gellermann W, Frederick JM, Tsuchida K, Bernstein PS (2009) Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 48:4798–4807

    Article  CAS  PubMed  Google Scholar 

  50. Matthews SJ, Ross NW, Lall SP, Gill TA (2006) Astaxanthin binding protein in Atlantic salmon. Comp Biochem Physiol B Biochem Mol Biol 144:206–214

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors have any proprietary interests or conflicts of interest related to this submission. None of the authors have any financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Demirel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirel, S., Bilici, S., Batıoglu, F. et al. The effect of age and cataract surgery on macular pigment optic density: a cross-sectional, comparative study. Graefes Arch Clin Exp Ophthalmol 252, 213–218 (2014). https://doi.org/10.1007/s00417-013-2424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2424-2

Keywords

Navigation