Skip to main content

Advertisement

Log in

The horizontal dark oculomotor rest position

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

This study sought to investigate whether eye dominance and age are related to the stimulus-free oculomotor resting state described via the dark disconjugate position (near or far), the dark conjugate position (left to right), and the near dissociated phoria.

Methods

Nineteen non-presbyopes and 25 presbyopes with normal binocular vision participated in two identical sessions. The left-eye and the right-eye positions were recorded using a video-based infrared eye tracker while the subjects were in total darkness. Dark disconjugate responses and dark conjugate responses were calculated by computing the difference and the average of the left-eye and the right-eye response, respectively. The right-eye decaying to the phoria level was recorded for 15 s.

Results

A one-way ANOVA assessed statistical differences in dark conjugate and dark disconjugate positions, comparing 1) the right-eye and the left-eye sensory and/or motor dominant groups and 2) the non-presbyope and presbyope groups. The test-retests of the dark disconjugate position, the dark conjugate position and the near dissociated heterophoria were high between sessions (r > 0.85; p < 0.00001). For non-presbyopes the right-eye (left-eye) motor and sensory dominant subjects showed a rightward (leftward) dark conjugate position (p < 0.01). The dark disconjugate position was receded in presbyopes compared to non-presbyopes (p < 0.0001).

Conclusion

The data support that the left-eye, or the right-eye, motor and sensory dominance predicts the direction of the dark conjugate position. Future studies could investigate the underlying neural substrates that may, in part, contribute to the resting state of the oculomotor system in a stimulus-free environment. Knowledge of the brain-behavior governing visual-field preference has implications for understanding the natural aging process of the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ogle KN (1964) Researches in binocular vision. Hafner, New York, pp 50–55

    Google Scholar 

  2. Coren S, Kaplan CP (1973) Patterns of ocular dominance. Am J Optom Arch Am Acad Optom 50:283–292

    Article  PubMed  CAS  Google Scholar 

  3. Coren S, Porac C (1976) Size accentuation in the dominant eye. Nature 260:527–528

    Article  PubMed  CAS  Google Scholar 

  4. Li J, Lam CS, Yu M, Hess RF, Chan LY, Maehara G, Woo GC, Thompson B (2010) Quantifying sensory eye dominance in the normal visual system: a new technique and insights into variation across traditional tests. Invest Ophthalmol Vis Sci 51:6875–6881

    Article  PubMed  Google Scholar 

  5. Barbeito R (1981) Sighting dominance: an explanation based on the processing of visual direction in tests of sighting dominance. Vis Res 21:855–860

    Article  PubMed  CAS  Google Scholar 

  6. Miles WR (1930) Ocular dominance in human adults. J Gen Psychol 3:412–420

    Article  Google Scholar 

  7. Ono H, Barbeito R (1982) The cyclopean eye vs. the sighting-dominant eye as the center of visual direction. Percept Psychophys 32:201–210

    Article  PubMed  CAS  Google Scholar 

  8. Mapp AP, Ono H, Barbeito R (2003) What does the dominant eye dominate? A brief and somewhat contentious review. Percept Psychophys 65:310–317

    Article  PubMed  Google Scholar 

  9. Porta JB (1593) De refractione optices parte: Libri novem. Carlinum and Pacem, Naples

  10. Handa T, Mukuno K, Uozato H, Niida T, Shoji N, Minei R, Nitta M, Shimizu K (2004) Ocular dominance and patient satisfaction after monovision induced by intraocular lens implantation. J Cataract Refract Surg 30:769–774

    Article  PubMed  Google Scholar 

  11. Handa T, Mukuno K, Uozato H, Niida T, Shoji N, Shimizu K (2004) Effects of dominant and nondominant eyes in binocular rivalry. Optom Vis Sci 81:377–383

    Article  PubMed  Google Scholar 

  12. Romano PE (1988) Ocular dominance tests before cataract surgery, especially monocular or unilateral. Ophthalmology 95:856

    PubMed  CAS  Google Scholar 

  13. Seijas O, Gomez De Liano P, Gomez De Liano R, Roberts CJ, Piedrahita E, Diaz E (2007) Ocular dominance diagnosis and its influence in monovision. Am J Ophthalmol 144:209–216

    Article  PubMed  Google Scholar 

  14. Westin E, Wick B, Harrist RB (2000) Factors influencing success of monovision contact lens fitting: survey of contact lens diplomates. Optometry 71:757–763

    PubMed  CAS  Google Scholar 

  15. Linke SJ, Baviera J, Munzer G, Steinberg J, Richard G, Katz T (2011) Association between ocular dominance and spherical/astigmatic anisometropia, age, and sex: analysis of 10,264 myopic individuals. Invest Ophthalmol Vis Sci 52:9166–9173

    Article  PubMed  Google Scholar 

  16. Linke SJ, Baviera J, Richard G, Katz T (2012) Association between ocular dominance and spherical/astigmatic anisometropia, Age and Sex: analysis of 1274 hyperopic individuals. Invest Ophthalmol Vis Sci 53:5362–5369

    Article  PubMed  Google Scholar 

  17. Mendola JD, Conner IP (2007) Eye dominance predicts fMRI signals in human retinotopic cortex. Neurosci Lett 414:30–34

    Article  PubMed  CAS  Google Scholar 

  18. Rombouts SA, Barkhof F, Sprenger M, Valk J, Scheltens P (1996) The functional basis of ocular dominance: functional MRI (fMRI) findings. Neurosci Lett 221:1–4

    Article  PubMed  CAS  Google Scholar 

  19. Seyal M, Sato S, White BG, Porter RJ (1981) Visual evoked potentials and eye dominance. Electroencephalogr Clin Neurophysiol 52:424–428

    Article  PubMed  CAS  Google Scholar 

  20. Taghavy A, Kugler CF (1987) Pattern reversal visual evoked potentials (white-black- and colour-black-PVEPs) in the study of eye dominance. Eur Arch Psychiatr Neurol Sci 236:329–332

    Article  CAS  Google Scholar 

  21. Ibi K (1997) Characteristics of dynamic accommodation responses: comparison between the dominant and non-dominant eyes. Ophthalmic Physiol Opt 17:44–54

    Article  PubMed  CAS  Google Scholar 

  22. Kawata H, Ohtsuka K (2001) Dynamic asymmetries in convergence eye movements under natural viewing conditions. Jpn J Ophthalmol 45:437–444

    Article  PubMed  CAS  Google Scholar 

  23. Oishi A, Tobimatsu S, Arakawa K, Taniwaki T, Kira J (2005) Ocular dominancy in conjugate eye movements at reading distance. Neurosci Res 52:263–268

    Article  PubMed  Google Scholar 

  24. Van Leeuwen AF, Collewijn H, Erkelens CJ (1998) Dynamics of horizontal vergence movements: interaction with horizontal and vertical saccades and relation with monocular preferences. Vis Res 38:3943–3954

    Article  PubMed  Google Scholar 

  25. Rosenfield M (1997) Tonic vergence and vergence adaptation. Optom Vis Sci 74:303–328

    Article  PubMed  CAS  Google Scholar 

  26. Han SJ, Guo Y, Granger-Donetti B, Vicci VR, Alvarez TL (2010) Quantification of heterophoria and phoria adaptation using an automated objective system compared to clinical methods. Ophthalmic Physiol Opt 30:95–107

    Article  PubMed  Google Scholar 

  27. Jaschinski W, Jainta S, Hoormann J, Walper N (2007) Objective vs subjective measurements of dark vergence. Ophthalmic Physiol Opt 27:85–92

    Article  PubMed  Google Scholar 

  28. Kim EH, Alvarez TL (2012) The changes in phoria and convergence to divergence peak velocity ratio are correlated. Curr Eye Res 37:1054–1065

    Article  PubMed  Google Scholar 

  29. Kim EH, Granger-Donetti B, Vicci VR, Alvarez TL (2010) The relationship between phoria and the ratio of convergence peak velocity to divergence peak velocity. Invest Ophthalmol Vis Sci 51:4017–4027

    Article  PubMed  Google Scholar 

  30. Kim EH, Vicci VR, Granger-Donetti B, Alvarez TL (2011) Short-term adaptations of the dynamic disparity vergence and phoria systems. Exp Brain Res 212:267–278

    Article  PubMed  Google Scholar 

  31. Lee YY, Granger-Donetti B, Chang C, Alvarez TL (2009) Sustained convergence induced changes in phoria and divergence dynamics. Vis Res 49:2960–2972

    Article  PubMed  Google Scholar 

  32. Jaschinski W (2001) Fixation disparity and accommodation for stimuli closer and more distant than oculomotor tonic positions. Vis Res 41:923–933

    Article  PubMed  CAS  Google Scholar 

  33. Schor CM, Kotulak JC, Tsuetaki T (1986) Adaptation of tonic accommodation reduces accommodative lag and is masked in darkness. Invest Ophthalmol Vis Sci 27:820–827

    PubMed  CAS  Google Scholar 

  34. Freier BE, Pickwell LD (1983) Physiological exophoria. Ophthalmic Physiol Opt 3:267–272

    Article  PubMed  CAS  Google Scholar 

  35. Yekta AA, Pickwell LD, Jenkins TC (1989) Binocular vision, age and symptoms. Ophthalmic Physiol Opt 9:115–120

    Article  PubMed  CAS  Google Scholar 

  36. Mcdonnell PJ, Lee P, Spritzer K, Lindblad AS, Hays RD (2003) Associations of presbyopia with vision-targeted health-related quality of life. Arch Ophthalmol 121:1577–1581

    Article  PubMed  Google Scholar 

  37. Alvarez TL, Vicci VR, Alkan Y, Kim EH, Gohel S, Barrett AM, Chiaravalloti N, Biswal BB (2010) Vision therapy in adults with convergence insufficiency: clinical and functional magnetic resonance imaging measures. Optom Vis Sci 87:E985–E1002

    Article  PubMed  Google Scholar 

  38. Scheiman M, Gallaway M, Frantz KA, Peters RJ, Hatch S, Cuff M, Mitchell GL (2003) Nearpoint of convergence: test procedure, target selection, and normative data. Optom Vis Sci 80:214–225

    Article  PubMed  Google Scholar 

  39. Benjamin W, Borish I (1998) Borish’s Clinical refraction. Saunders, Philadelphia, pp 559–628

    Google Scholar 

  40. Grosvenor T (2007) Primary care optometry. Butterworth-Heinemann, Boston, pp 13–16

    Google Scholar 

  41. Krantz EM, Cruickshanks KJ, Klein BE, Klein R, Huang GH, Nieto FJ (2010) Measuring refraction in adults in epidemiological studies. Arch Ophthalmol 128:88–92

    Article  PubMed  Google Scholar 

  42. Khojasteh E, Galiana HL (2007) Modulation of vergence during the vestibulo-ocular reflex. Conf Proc IEEE Eng Med Biol Soc 2007:5377–5380

    PubMed  Google Scholar 

  43. Guo Y, Kim EH, Alvarez TL (2011) VisualEyes: a modular software system for oculomotor experimentation. J Vis Exp. e2530

  44. Rambold H, Neumann G, Sander T, Helmchen C (2006) Age-related changes of vergence under natural viewing conditions. Neurobiol Aging 27:163–172

    Article  PubMed  Google Scholar 

  45. Meijering E (2002) A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc IEEE 90:319–342

    Article  Google Scholar 

  46. Chen Y-F, Lee YY, Chen T, Semmlow JL, Alvarez TL (2010) Behaviors, models and clinical applications of vergence eye movements. J Med Biol Eng 3:1–15

    CAS  Google Scholar 

  47. Semmlow JL, Alvarez TL, Granger-Donetti B (2012) Error correction in vergence eye movements: evidence supporting Hering’s Law. J Eye Mov Res 5:1–9

    Google Scholar 

  48. Semmlow JL, Alvarez TL, Pedrono C (2007) Dry dissection of disparity divergence eye movements using independent component analysis. Comput Biol Med 37:910–918

    Article  PubMed  Google Scholar 

  49. Semmlow JL, Chen Y-F, Pedrono C, Alvarez TL (2008) Saccadic behavior during the response to pure disparity vergence stimuli I: general properties. J Eye Mov Res 1:1–11

    Google Scholar 

  50. Kim EH, Vicci VR, Han SJ, Alvarez TL (2011) Sustained fixation induced changes in phoria and convergence peak velocity. PLoS One 6:e20883

    Article  PubMed  CAS  Google Scholar 

  51. Lenth R (2006) Java Applets for Power and Sample Size [Computer software]. Available: http://www.stat.uiowa.edu/~rlenth/Power accessed on March 8, 2013

  52. Runger M (2007) Probability and statistics. Wiley and Sons, Hoboken

    Google Scholar 

  53. Mcginty SJ, Truscott RJ (2006) Presbyopia: the first stage of nuclear cataract? Ophthalmic Res 38:137–148

    Article  PubMed  CAS  Google Scholar 

  54. Schachar RA, Chan RW, Fu M (2011) Viscoelastic properties of fresh human lenses under 40 years of age: implications for the aetiology of presbyopia. Br J Ophthalmol 95:1010–1013

    Article  PubMed  Google Scholar 

  55. Sheppard AL, Davies LN (2011) The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 52:1809–1816

    Article  PubMed  Google Scholar 

  56. Charman WN (2008) The eye in focus: accommodation and presbyopia. Clin Exp Optom 91:207–225

    Article  PubMed  Google Scholar 

  57. Roth HL, Lora AN, Heilman KM (2002) Effects of monocular viewing and eye dominance on spatial attention. Brain 125:2023–2035

    Article  PubMed  Google Scholar 

  58. Weiss PH, Marshall JC, Wunderlich G, Tellmann L, Halligan PW, Freund HJ, Zilles K, Fink GR (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123(Pt 12):2531–2541

    Article  PubMed  Google Scholar 

  59. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  60. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14:364–375

    Article  PubMed  Google Scholar 

  61. Dolcos F, Rice HJ, Cabeza R (2002) Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev 26:819–825

    Article  PubMed  Google Scholar 

  62. Madden DJ (2007) Aging and visual attention. Curr Dir Psychol Sci 16:70–74

    Article  PubMed  Google Scholar 

  63. Kommerell G, Schmitt C, Kromeier M, Bach M (2003) Ocular prevalence versus ocular dominance. Vis Res 43:1397–1403

    Article  PubMed  Google Scholar 

  64. Suttle C, Alexander J, Liu M, Ng S, Poon J, Tran T (2009) Sensory ocular dominance based on resolution acuity, contrast sensitivity and alignment sensitivity. Clin Exp Optom 92:2–8

    Article  PubMed  Google Scholar 

  65. Post RB, Caufield KJ, Welch RB (2001) Contributions of object- and space-based mechanisms to line bisection errors. Neuropsychologia 39:856–864

    Article  PubMed  CAS  Google Scholar 

  66. Heilman KM (1979) Neglect and related disorders. Oxford University Press, New York

    Google Scholar 

  67. Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans Roy Soc Lond B Biol Sci 354:1325–1346

    Article  CAS  Google Scholar 

  68. Becker E, Karnath HO (2010) Neuroimaging of eye position reveals spatial neglect. Brain 133:909–914

    Article  PubMed  Google Scholar 

  69. Marx E, Deutschlander A, Stephan T, Dieterich M, Wiesmann M, Brandt T (2004) Eyes open and eyes closed as rest conditions: impact on brain activation patterns. NeuroImage 21:1818–1824

    Article  PubMed  Google Scholar 

  70. Marx E, Stephan T, Nolte A, Deutschlander A, Seelos KC, Dieterich M, Brandt T (2003) Eye closure in darkness animates sensory systems. NeuroImage 19:924–934

    Article  PubMed  Google Scholar 

  71. Dowley D (1987) The orthophorization of heterophoria. Ophthalmic Physiol Opt 7:169–174

    Article  PubMed  CAS  Google Scholar 

  72. Dowley D (1990) Heterophoria. Optom Vis Sci 67:456–460

    Article  PubMed  CAS  Google Scholar 

  73. Radakovic M, Ivetic V, Naumovic N, Canadanovic V, Stankov B (2012) Heterophoria and fusional convergence and divergence in preschool children. Med Glas (Zenica) 9:293–298

    Google Scholar 

  74. Anderson H, Stuebing KK, Fern KD, Manny RE (2011) Ten-year changes in fusional vergence, phoria, and nearpoint of convergence in myopic children. Optom Vis Sci 88:1060–1065

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Alvarez.

Additional information

Grants

This research was supported in part by NSF MRI CBET1228254 to TLA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.H., Alvarez, T.L. The horizontal dark oculomotor rest position. Graefes Arch Clin Exp Ophthalmol 251, 2119–2130 (2013). https://doi.org/10.1007/s00417-013-2379-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2379-3

Keywords

Navigation