Skip to main content

Advertisement

Log in

The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate and compare the glaucoma detection capabilities afforded by retinal nerve fiber layer (RNFL) thickness and deviation maps obtained using Cirrus spectral domain optical coherence tomography (Cirrus OCT), and GDx employing variable corneal compensation (GDx-VCC) in glaucoma patients with early, localized visual field (VF) loss.

Methods

This prospective controlled, comparative study was performed on 42 eyes with localized VF defects, and 42 age/refractive error-matched healthy eyes. All participants were imaged by both imaging devices at the same visit. The area of the RNFL defect in each deviation map, corresponding to a VF defect, was analyzed by direct counting of color-coded superpixels in each device. Receiver operating characteristic (ROC) curves were constructed and compared between Cirrus OCT and GDx-VCC.

Results

The areas under the ROCs (AUCs) of RNFL quadrant thicknesses in hemifields with visual field (VF) defects did not differ significantly (Cirrus OCT; 0.961, GDx-VCC; 0.919, P = 0.07). However, Cirrus OCT afforded a better diagnostic ability, by deviation map analysis, than did GDx-VCC (0.972 vs 0.887, P = 0.02).

Conclusions

The RNFL thicknesses assessed by either Cirrus OCT or GDx-VCC were comparable in terms of early glaucoma diagnostic capability. However, when areas containing RNFL defects were analyzed via deviation mapping, Cirrus OCT was better than GDx-VCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28

    PubMed  CAS  Google Scholar 

  2. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  PubMed  CAS  Google Scholar 

  3. Medeiros FA, Zangwill LM, Bowd C, Mohammadi K, Weinreb RN (2004) Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 122:698–704

    Article  PubMed  Google Scholar 

  4. Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119:985–993

    Article  PubMed  CAS  Google Scholar 

  5. Kook MS, Cho HS, Seong M, Choi J (2005) Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Ophthalmology 112:1970–1978

    Article  PubMed  Google Scholar 

  6. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA, Zangwill LM (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93:775–781

    Article  PubMed  CAS  Google Scholar 

  7. Sung KR, Kim DY, Park SB, Kook MS (2009) Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 116:1264–1270

    Article  PubMed  Google Scholar 

  8. Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609

    Article  PubMed  Google Scholar 

  9. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, Lam DS (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116:1257–1263, 1263

    Article  PubMed  Google Scholar 

  10. Jeoung JW, Park KH (2010) Comparison of cirrus OCT and stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 51:938–945

    Article  PubMed  Google Scholar 

  11. Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228

    PubMed  Google Scholar 

  12. Weinreb RN, Bowd C, Zangwill LM (2003) Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 121:218–224

    Article  PubMed  Google Scholar 

  13. Bagga H, Greenfield DS (2004) Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Am J Ophthalmol 137:797–805

    Article  PubMed  Google Scholar 

  14. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117:1684–1691

    Article  PubMed  Google Scholar 

  15. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG (2004) Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci 45:1716–1724

    Article  PubMed  Google Scholar 

  16. Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garcia-Feijoo J (2008) Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci 49:3018–3025

    Article  PubMed  Google Scholar 

  17. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815

    Article  PubMed  CAS  Google Scholar 

  18. Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Liu L, Lai GW, Lau J, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 117:2337–2344

    Article  PubMed  Google Scholar 

  19. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  20. Jaeschke R, Guyatt GH, Sackett DL (1994) Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 271:703–707

    Article  PubMed  CAS  Google Scholar 

  21. Horn FK, Jonas JB, Martus P, Mardin CY, Budde WM (1999) Polarimetric measurement of retinal nerve fiber layer thickness in glaucoma diagnosis. J Glaucoma 8:353–362

    Article  PubMed  CAS  Google Scholar 

  22. Lee S, Sung KR, Cho JW, Cheon MH, Kang SY, Kook MS (2010) Spectral-domain optical coherence tomography and scanning laser polarimetry in glaucoma diagnosis. Jpn J Ophthalmol 54:544–549

    Article  PubMed  Google Scholar 

  23. Ye C, To E, Weinreb RN, Yu M, Liu S, Lam DS, Leung CK (2011) Comparison of retinal nerve fiber layer imaging by spectral-domain optical coherence tomography and scanning laser ophthalmoscopy. Ophthalmology 118:2196–2202

    Article  PubMed  Google Scholar 

  24. Kang SY, Sung KR, Na JH, Choi EH, Cho JW, Cheon MH, Kim KH, Kook MS (2012) Comparison between deviation map algorithm and peripapillary retinal nerve fiber layer measurements using Cirrus HD-OCT in the detection of localized glaucomatous visual field defects. J Glaucoma 21:372–378

    Article  PubMed  Google Scholar 

  25. Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ (2011) The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 95:255–260

    Article  PubMed  Google Scholar 

  26. Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS (2011) Imaging of the retinal nerve fibre layer with spectral-domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 95:909–914

    Article  PubMed  Google Scholar 

  27. Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K (1990) Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol 108:557–560

    Article  PubMed  CAS  Google Scholar 

  28. Bagga H, Greenfield DS, Feuer WJ (2005) Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 139:437–446

    Article  PubMed  Google Scholar 

  29. Da Pozzo S, Marchesan R, Canziani T, Vattovani O, Ravalico G (2006) Atypical pattern of retardation on GDx-VCC and its effect on retinal nerve fibre layer evaluation in glaucomatous eyes. Eye (Lond) 20:769–775

    Article  Google Scholar 

  30. Bowd C, Medeiros FA, Weinreb RN, Zangwill LM (2007) The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 48:223–227

    Article  PubMed  Google Scholar 

  31. Hoesl LM, Tornow RP, Schrems WA, Horn FK, Mardin CY, Kruse FE, Juenemann AG, Laemmer R (2013) Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern. J Glaucoma 22:317–324

    Article  PubMed  Google Scholar 

  32. Toth M, Hollo G (2006) Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK. J Glaucoma 15:53–59

    Article  PubMed  Google Scholar 

  33. Toth M, Hollo G (2005) Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol 89:1139–1142

    Article  PubMed  CAS  Google Scholar 

  34. Mai TA, Reus NJ, Lemij HG (2007) Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology 114:1988–1993

    Article  PubMed  CAS  Google Scholar 

  35. Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN (2007) Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 48:3146–3153

    Article  PubMed  Google Scholar 

  36. Reus NJ, Zhou Q, Lemij HG (2006) Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci 47:3870–3877

    Article  PubMed  Google Scholar 

  37. Choi J, Cho HS, Lee CH, Kook MS (2006) Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology 113:1954–1960

    Article  PubMed  Google Scholar 

  38. Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, Peace JH, Werner JS, Wollstein G (2011) Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7872–7879

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Kook.

Additional information

The authors have no proprietary interest, and received no financial support in the development or marketing of instruments or pieces of equipment mentioned in this article, nor any competing instrument or equipment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, J.H., Lee, K.S., Lee, J.R. et al. The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects. Graefes Arch Clin Exp Ophthalmol 251, 2371–2382 (2013). https://doi.org/10.1007/s00417-013-2362-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2362-z

Keywords

Navigation