Skip to main content

Advertisement

Log in

Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders?

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Vitreoretinal disorders, including proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR) and exudative age-related macular degeneration (AMD), are a major cause of visual impairment worldwide and can lead to blindness when untreated. Loss of blood-retinal barrier (BRB) integrity associated with vitreoretinal fibrin deposition, inflammation, fibrosis and neovascularization contribute to the pathophysiological processes in these disorders. Retinal pigment epithelial (RPE) cells are well recognized to contribute to vitreoretinal inflammation/fibrosis and are likely to encounter contact with coagulation factor upon loss of BRB integrity.

Methods

An extensive study was performed in which we examined the effect of factor Xa and thrombin on the production of a broad panel of cytokines/chemokines and growth factors by RPE cells. For this purpose we used the ARPE-19 cell line as well as primary RPE cells, a glass slide based array that allows simultaneous detection of 120 cytokines/chemokines and growth factors, ELISA and real-time-quantitative PCR. The involved signaling cascade was examined using specific inhibitors for protease activated receptor (PAR)1, PAR2 and nuclear factor kappa-B (NF-κB).

Results

Factor Xa and thrombin regulated the production of cytokines and growth factors (including GM-CSF, IL-6, IL-8, MCP-3, PDGF-AA, PDGF-BB, TIMP-1 and TGF-α) that fit well in the pathobiology of vitreoretinal disease. Blocking studies revealed that the effects were mediated via PAR1 induced NF-κB activation.

Conclusions

Our findings suggest that factor Xa and thrombin can drive vitreoretinal inflammation and fibrosis and should be considered as treatment targets in vitreoretinal disorders such as PVR, PDR and AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117(3):576–586

    Article  PubMed  CAS  Google Scholar 

  2. Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43(1):3–18

    Article  PubMed  CAS  Google Scholar 

  3. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  PubMed  CAS  Google Scholar 

  4. Pastor JC, de la Rua ER, Martin F (2002) Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 21(1):127–144

    Article  PubMed  Google Scholar 

  5. Ricker LJ, Dieri RA, Beckers GJ, Pels E, Liem AT, Hendrikse F, Kijlstra A, Hemker HC, La Heij EC (2010) High subretinal fluid procoagulant activity in rhegmatogenous retinal detachment. Invest Ophthalmol Vis Sci 51(10):5234–5249

    Article  PubMed  Google Scholar 

  6. Weber DS, Griendling KK (2004) Thrombin: beyond coagulation. J Mol Cell Cardiol 36(1):13–15

    Article  PubMed  CAS  Google Scholar 

  7. Dik WA, Zimmermann LJ, Naber BA, Janssen DJ, van Kaam AH, Versnel MA (2003) Thrombin contributes to bronchoalveolar lavage fluid mitogenicity in lung disease of the premature infant. Pediatr Pulmonol 35(1):34–41

    Article  PubMed  Google Scholar 

  8. Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130(3):248–282

    Article  PubMed  CAS  Google Scholar 

  9. Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Thrombin regulates chemokine induction during human retinal pigment epithelial cell/monocyte interaction. Am J Pathol 159(3):1171–1180

    Article  PubMed  CAS  Google Scholar 

  10. Hollborn M, Petto C, Steffen A, Trettner S, Bendig A, Wiedemann P, Bringmann A, Kohen L (2009) Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors. Invest Ophthalmol Vis Sci 50(9):4452–4459

    Article  PubMed  Google Scholar 

  11. Yoshida M, Tanihara H, Yoshimura N (1992) Platelet-derived growth factor gene expression in cultured human retinal pigment epithelial cells. Biochem Biophys Res Commun 189(1):66–71

    Article  PubMed  CAS  Google Scholar 

  12. Hollborn M, Kohen L, Werschnik C, Tietz L, Wiedemann P, Bringmann A (2012) Activated blood coagulation Factor X (FXa) induces angiogenic growth factor expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 53(9):5930–5939

    Article  PubMed  CAS  Google Scholar 

  13. Milikan JC, Baarsma GS, Kuijpers RWAM, Osterhaus ADME, Verjans GM (2009) Human ocular-derived virus-specific CD4+ T cells control varicella zoster virus replication in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50(2):743–751

    Article  PubMed  Google Scholar 

  14. Dik WA, Nadel B, Przybylski GK, Asnafi V, Grabarczyk P, Navarro JM, Verhaaf B, Schmidt CA, Macintyre EA, van Dongen JJM, Langerak AW (2007) Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood 110(1):388–392

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Wang H, Wang F, Gu Q, Xu X (2011) Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One 6(8):e23322

    Article  PubMed  CAS  Google Scholar 

  16. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    Article  PubMed  CAS  Google Scholar 

  17. Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16(3–4):249–284

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407

    Article  PubMed  CAS  Google Scholar 

  19. Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41(2):92–104

    Article  PubMed  CAS  Google Scholar 

  20. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F (2001) Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276(13):9945–9954

    Article  PubMed  CAS  Google Scholar 

  21. Proost P, Wuyts A, van Damme J (1996) Human monocyte chemotactic proteins-2 and −3: structural and functional comparison with MCP-1. J Leukoc Biol 59(1):67–74

    PubMed  CAS  Google Scholar 

  22. Kakehashi A, Inoda S, Mameuda C, Kuroki M, Jono T, Nagai R, Horiuchi S, Kawakami M, Kanazawa Y (2008) Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabetes Res Clin Pract 79(3):438–445

    Article  PubMed  CAS  Google Scholar 

  23. Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I (2012) Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53(9):5292–5300

    Article  PubMed  CAS  Google Scholar 

  24. Zhang W, Tan J, Liu Y, Li W, Gao Q, Lehmann PV (2012) Assessment of the innate and adaptive immune system in proliferative vitreoretinopathy. Eye (Lond) 26(6):872–881

    Article  CAS  Google Scholar 

  25. Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90(5):381–388

    Article  Google Scholar 

  26. Kauffmann DJ, van Meurs JC, Mertens DA, Peperkamp E, Master C, Gerritsen ME (1994) Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 35(3):900–906

    PubMed  CAS  Google Scholar 

  27. Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E (2012) Increased Prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci 53(9):5906–5911

    Article  PubMed  CAS  Google Scholar 

  28. van den Berg JW, van der Zee M, de Bruin RW, van Holten-Neelen C, Bastiaans J, Nagtzaam NM, Ijzermans JN, Benner R, Dik WA (2011) Mild versus strong anti-inflammatory therapy during early sepsis in mice: a matter of life and death. Crit Care Med 39(6):1275–1281

    Article  PubMed  Google Scholar 

  29. Ferrari-Lacraz S, Ferrari S (2011) Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 22(2):435–446

    Article  PubMed  CAS  Google Scholar 

  30. Holtmann MH, Schutz M, Galle PR, Neurath MF (2002) Functional relevance of soluble TNF-alpha, transmembrane TNF-alpha and TNF-signal transduction in gastrointestinal diseases with special reference to inflammatory bowel diseases. Z Gastroenterol 40(8):587–600

    Article  PubMed  CAS  Google Scholar 

  31. Wilhelm C, Turner JE, van Snick J, Stockinger B (2012) The many lives of IL-9: a question of survival? Nat Immunol 13(7):637–641

    Article  PubMed  CAS  Google Scholar 

  32. Dik WA (2012) Acute lung injury: can the fibrocyte of today turn into the fibroguide of the future? Crit Care Med 40(1):300–301

    Article  PubMed  Google Scholar 

  33. Dik WA, de Krijger RR, Bonekamp L, Naber BA, Zimmermann LJ, Versnel MA (2001) Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and −2 in different phases of bronchopulmonary dysplasia. Pediatr Res 50(6):761–766

    Article  PubMed  CAS  Google Scholar 

  34. Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol 89(4):339–345

    Article  PubMed  CAS  Google Scholar 

  35. van Steensel L, Hooijkaas H, Paridaens D, van den Bosch WA, Kuijpers RWAM, Drexhage HA, van Hagen PM, Dik WA (2012) PDGF enhances orbital fibroblast responses to TSHR stimulating autoantibodies in graves’ ophthalmopathy patients. J Clin Endocrinol Metab 97(6):944–953

    Article  Google Scholar 

  36. Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci 35(10):3649–3663

    PubMed  CAS  Google Scholar 

  37. Cui J, Lei H, Samad A, Basavanthappa S, Maberley D, Matsubara J, Kazlauskas A (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88(3):438–444

    Article  PubMed  CAS  Google Scholar 

  38. Cui JZ, Chiu A, Maberly D, Ma P, Samad A, Matsubara JA (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye (Lond) 21(2):200–208

    Article  CAS  Google Scholar 

  39. Zheng Y, Ikuno Y, Ohj M, Kusaka S, Jiang R, Cekic O, Sawa M, Tano Y (2003) Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. Jpn J Ophthalmol 47(2):158–165

    Article  PubMed  CAS  Google Scholar 

  40. Bochaton-Piallat ML, Kapetanios AD, Donati G, Redard M, Gabbiani G, Pournaras CJ (2000) TGF-beta1, TGF-beta receptor II and ED-A fibronectin expression in myofibroblast of vitreoretinopathy. Invest Ophthalmol Vis Sci 41(8):2336–2342

    PubMed  CAS  Google Scholar 

  41. Meurer SK, Esser M, Tihaa L, Weiskirchen R (2012) BMP-7/TGF-beta1 signalling in myoblasts: components involved in signalling and BMP-7-dependent blockage of TGF-beta-mediated CTGF expression. Eur J Cell Biol 91(6–7):450–463

    Article  PubMed  CAS  Google Scholar 

  42. Todaro GJ, Fryling C, De Larco JE (1980) Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77(9):5258–5262

    Article  PubMed  CAS  Google Scholar 

  43. Madtes DK, Busby HK, Strandjord TP, Clark JG (1994) Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol 11(5):540–551

    Article  PubMed  CAS  Google Scholar 

  44. Beyer C, Distler JH (2012) Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2012.06.008

    Google Scholar 

  45. Mukherjee S, Guidry C (2007) The insulin-like growth factor system modulates retinal pigment epithelial cell tractional force generation. Invest Ophthalmol Vis Sci 48(4):1892–1899

    Article  PubMed  Google Scholar 

  46. Grant MB, Guay C, Marsh R (1990) Insulin-like growth factor I stimulates proliferation, migration, and plasminogen activator release by human retinal pigment epithelial cells. Curr Eye Res 9(4):323–335

    Article  PubMed  CAS  Google Scholar 

  47. Gillery P, Leperre A, Maquart FX, Borel JP (1992) Insulin-like growth factor-I (IGF-I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts. J Cell Physiol 152(2):389–396

    Article  PubMed  CAS  Google Scholar 

  48. Smith TJ (2010) Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 62(2):199–236

    Article  PubMed  CAS  Google Scholar 

  49. King JL, Guidry C (2012) Vitreous IGFBP-3 effects on muller cell proliferation and tractional force generation. Invest Ophthalmol Vis Sci 53(1):93–99

    Article  PubMed  CAS  Google Scholar 

  50. Ruan W, Ying K (2010) Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 206(8):537–43

    Article  PubMed  CAS  Google Scholar 

  51. Ayala A, Warejcka DJ, Olague-Marchan M, Twining SS (2007) Corneal activation of prothrombin to form thrombin, independent of vascular injury. Invest Ophthalmol Vis Sci 48(1):134–143

    Article  PubMed  Google Scholar 

  52. Hoang CD, Zhang X, Scott PD, Guillaume TJ, Maddaus MA, Yee D, Kratze RA (2004) Selective activation of insulin receptor substrate-1 and −2 in pleural mesothelioma cells: association with distinct malignant phenotypes. Cancer Res 64(20):7479–7485

    Article  PubMed  CAS  Google Scholar 

  53. van Steensel L, Paridaens D, van Meurs M, van Hagen PM, van den Bosch WA, Kuijpers RWAM, Drexhage HA, Hooijkaas H, Dik WA (2012) Orbit-infiltrating mast cells, monocytes, and macrophages produce PDGF isoforms that orchestrate orbital fibroblast activation in Graves’ ophthalmopathy. J Clin Endocrinol Metab 97(3):E400–408

    Article  PubMed  Google Scholar 

  54. van Steensel L, Paridaens D, Schrijver B, Dingjan GM, van Daele PLA, van Hagen PM, van de Bosch WA, Drexhage HA, Hooijkaas H, Dik WA (2009) Imatinib mesylate and AMN107 inhibit PDGF-signaling in orbital fibroblasts: a potential treatment for Graves’ ophthalmopathy. Invest Ophthalmol Vis Sci 50(7):3091–3098

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sandra de Bruin – Versteeg for her help with the illustrations.

Conflict of interest disclosure

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Bastiaans.

Additional information

This study is financially supported by: Combined Ophthalmic Research Rotterdam (CORR- Project code: 3.1.0)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastiaans, J., van Meurs, J.C., van Holten-Neelen, C. et al. Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders?. Graefes Arch Clin Exp Ophthalmol 251, 1723–1733 (2013). https://doi.org/10.1007/s00417-013-2335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2335-2

Keywords

Navigation