Skip to main content

Advertisement

Log in

Rutin ameliorates free radical mediated cataract by enhancing the chaperone activity of α-crystallin

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Cataract, the leading cause of blindness, is associated with oxidative damage and protein modification in the lens. The present study was carried out to assess the efficacy of rutin on rat-lens crystallins in selenite-induced in-vivo cataract models.

Methods

Eight-day-old Sprague–Dawley rat pups were grouped as control (G I), experimental (G II) and rutin-treated (G III). The rat pups in G II, and G III received a single subcutaneous injection of sodium selenite (4 μg/g body weight) and G I received a single subcutaneous injection of sterile water on the 10th day. The treatment groups (G III) were administered with rutin (1 μg/g body weight) respectively from the 8th to 15th day. Cataract was visualized from the 16th day. Lens crystallins (α, β, and γ) were isolated by size exclusion chromatography. Chaperone activity of isolated crystallins was measured by heat, DTT, and oxidation-induced aggregation and refolding assays. Concentration of total protein (soluble and insoluble) and SDS–PAGE analysis of soluble proteins were also done.

Results

Treatment with rutin prevented the loss of α crystallin chaperone property, and protein insolubilization prevailed during selenite-induced cataract.

Conclusions

These results suggest the therapeutic potential of rutin, a bioflavonoid, against selenite-induced cataract, which has been reported in this paper for the first time. The work assumes significance, as this is a novel approach in modulating the chaperone activity of lens crystallins in selenite-induced cataract by a natural product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blomendal H (1982) Lens proteins. CRC Crit Rev Biochem 12:1–38

    Article  Google Scholar 

  2. Wistow G, Piatigorsky J (1988) Lens crystallins: the evolution and the expression of proteins for highly specialized tissue. Ann Rev Biochem 57:479–504

    Article  PubMed  CAS  Google Scholar 

  3. Horwitz J (2003) Alpha-crystallin can function as a molecular chaperone. Exp Eye Res 76:145–148

    Article  PubMed  CAS  Google Scholar 

  4. Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–37

    Article  PubMed  CAS  Google Scholar 

  5. Ohia SE, Opere CA, LeDay AM (2005) Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res 579:22–36

    Article  PubMed  CAS  Google Scholar 

  6. Thampi P, Hassan A, Smith JB, Abraham EC (2002) Enhanced C-terminal truncation of alpha A and alpha B crystallins in diabetic lenses. Invest Ophthalmol Vis Sci 43(344):3265–3272

    PubMed  Google Scholar 

  7. Hanson SR, Hasen A, Smith DL, Smith JB (2000) The major in vivo modification of the human water insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 71:195–207

    Article  PubMed  CAS  Google Scholar 

  8. Harding J (1991) Cataract: biochemistry, epidemiology and pharmacology, 1st edn. Chapman and Hall, New York

    Google Scholar 

  9. Ueda Y, Duncan MK, David LL (2002) Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci 43:205–215

    PubMed  Google Scholar 

  10. Bockelbrink A, Roll S, Ruether K, Rasch A, Greiner W, Willich SN (2008) Cataract surgery and the development or progression of age-related macular degeneration: a systematic review. Surv Ophthalmol 53:359–367

    Article  PubMed  Google Scholar 

  11. Toh T, Morton J, Coxon J, Elder MJ (2007) Medical treatment of cataract. Clin Exp Ophthalmol 35:664–671

    Article  Google Scholar 

  12. Toda J, Kato S, Oshika T, Sugita G (2007) Posterior capsule opacification after combined cataract surgery and vitrectomy. J Cataract Refract Surg 33:104–107

    Article  PubMed  Google Scholar 

  13. Cornish KM, Williamson G, Sanderson J (2002) Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med 33:63–70

    Article  PubMed  CAS  Google Scholar 

  14. Gupta SK, Trivedi D, Srivastava S, Joshi S, Halder N, Verma SD (2003) Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition 19:794–799

    Article  PubMed  CAS  Google Scholar 

  15. Gupta SK, Srivastava S, Trivedi D, Joshi S, Halder N (2005) Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification. Curr Eye Res 30:583–591

    Article  PubMed  CAS  Google Scholar 

  16. Lija Y, Biju PG, Reeni A, Cibin TR, Sahasranamam V, Abraham A (2006) Modulation of selenite cataract by the flavonoid fraction of Emilia sonchifolia in experimental animal models. Phytother Res 20:1091–1095

    Article  PubMed  CAS  Google Scholar 

  17. Elanchezhian R, Ramesh E, Sakthivel M, Isai M, Geraldine P (2007) Acetyl L-carnitine prevents selenite-induced cataractogenesis in an experimental animal model. Curr Eye Res 32:961–971

    Article  PubMed  CAS  Google Scholar 

  18. Biju PG, Devi VG, Lija Y, Abraham A (2007) Protection against selenite cataract in rat lens by drevogenin D, a triterpenoid aglycone from Dregea volubilis. J Med Food 10(2):308–315

    Article  PubMed  CAS  Google Scholar 

  19. Rooban BN, Lija Y, Biju PG, Sasikala V, Sahasranamam V, Abraham A (2009) Vitex nigundo attenuates calpain activation and cataractogenesis in selenite models. Exp Eye Res 88:575–582

    Article  PubMed  CAS  Google Scholar 

  20. Sasikala V, Rooban BN, Siva Priya SG, Sahasranamam V, Abraham A (2010) Moringa oleifera prevents selenite-induced cataractogenesis in rat pups. J Ocul Pharmacol Ther 26(5):441–447

    Article  PubMed  CAS  Google Scholar 

  21. Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25

    Article  PubMed  CAS  Google Scholar 

  22. Sreelatha S, Padma PR (2009) Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr 64(4):303–311

    Article  PubMed  CAS  Google Scholar 

  23. Al-Rejaie SS, Abuohashish HM, Alkhamees OA, Aleisa AM, Alroujayee AS (2012) Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in wistar rats. Lipids Health Dis 11:41

    Article  PubMed  CAS  Google Scholar 

  24. Isai M, Sakthivel M, Ramesh E, Thomas PA, Geraldine P (2009) Prevention of selenite-induced cataractogenesis by rutin in wistar rats. Mol Vis 15:2570–2577

    PubMed  CAS  Google Scholar 

  25. Kyung TW, Lee JE, Shin HH, Choi HS (2008) Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-α by inhibiting activation of NFĸB. Exp Mol Med 40(1):52–58

    Article  PubMed  CAS  Google Scholar 

  26. Ostadalova I, Babicky A, Obenberger J (1978) Cataract induced by administration of a single dose of sodium selenite to suckling rats. Experientia 34:222–225

    Article  PubMed  CAS  Google Scholar 

  27. Hiraoka T, Clark JI (1995) Inhibition of lens opacification during the early stages of cataract formation. Invest Ophthalmol Vis Sci 36:2550–2555

    PubMed  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  30. Reddy GB, Das KP, Petrash JM, Surewicz WK (2000) Temperature dependent chaperone activity and structural properties of human alpha A and alpha B crystallins. J Biol Chem 275:4565–4570

    Article  PubMed  CAS  Google Scholar 

  31. Wang K, Spector A (1994) The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269:13601–13608

    CAS  Google Scholar 

  32. Raman B, Rao CM (1997) Chaperone-like activity and temperature-induced structural changes of α-crystallin. J Biol Chem 272(38):23559–23564

    Article  PubMed  CAS  Google Scholar 

  33. Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  34. Babicky A, Rychter Z, Kopoldova J, Ostadalova I (1985) Age dependence of selenite uptake in rat eye lenses. Exp Eye Res 40:101–103

    Article  PubMed  CAS  Google Scholar 

  35. Shearer TR, Ma H, Fukiage C, Azuma M (1997) Selenite nuclear cataract: review of the model. Mol Vis 38:1–14

    Google Scholar 

  36. Matsushima H, David LL, Hiraoka T, Clark JI (1997) Loss of cytoskeletal proteins and lens cell opacification in the selenite cataract model. Exp Eye Res 64:387–395

    Article  PubMed  CAS  Google Scholar 

  37. Shearer TR, Shih M, Mizuno T, David L (1996) Crystallins from rat lens are especially susceptible to calpain-induced light scattering compared to other species. Curr Eye Res 15:860–868

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura Y, Fukiage C, Shih M, Ma H, David LL, Azuma M, Shearer TR (2000) Contribution of calpain Lp82-induced proteolysis to experimental cataractogenesis in mice. Invest Ophthalmol Vis Sci 41:1460–1466

    PubMed  CAS  Google Scholar 

  39. Yan H, Harding JJ, Hui YN, Li MY (2003) Decreased chaperone activity of α crystallin in selenite cataract may result from selenite-induced aggregation. Eye 17:637–645

    Article  PubMed  CAS  Google Scholar 

  40. Reddy GB, Reddy PY, Vijayalakshmi A, Kumar MS, Suryanarayana P, Sesikeran B (2002) Effect of long term dietary manipulation on the aggregation of rat lens crystallins: role of α-crystallin chaperone function. Mol Vis 8:298–305

    PubMed  CAS  Google Scholar 

  41. Peluso G, Petillo O, Barbarisi A, Melone MAB, Reda E, Nicolai R, Calvani M (2001) Carnitine protects the molecular chaperone activity of lens α-crystallin and decreases the posttranslational protein modifications induced by oxidative stress. FASEB J 15(9):1604–1606. doi:10.1096/fj.00-0727fje

    PubMed  CAS  Google Scholar 

  42. Srinivas V, Raman B, Rao KS, Ramakrishna T, Rao CM (2005) Arginine hydrochloride enhances the dynamics of subunit assembly and the chaperone-like activity of α-crystallin. Mol Vis 11:249–255

    PubMed  CAS  Google Scholar 

  43. Hori Y, Yoshikawa T, Tsuji N, Bamba T, Aso Y, Kudou M, Uchida Y, Takagi M, Harada K, Hirata K (2009) Phytochelatins inhibit the metal-induced aggregation of α-crystallin. J Biosci Bioeng 107(2):173–186

    Article  PubMed  CAS  Google Scholar 

  44. Anilkumar P, Suryanarayana P, Reddy PY, Reddy GB (2005) Modulation of α-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis 11:561–568

    Google Scholar 

  45. Wang K, Spector A (1995) α-crystallin can act as a chaperone under conditions of oxidative stress. Invest Opthalmol Vis Sci 36(2):311–321

    CAS  Google Scholar 

  46. Raman B, Ramakrishna T, Rao CM (1995) Temperature-dependent chaperone-like activity of alpha-crystallin. FEBS Lett 365:133–136

    Article  PubMed  CAS  Google Scholar 

  47. Boyle SP, Dobson VL, Duthie SJ, Hinselwood DC, Kyle JA, Collins AR (2000) Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 54:774–782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance in the form of junior research fellowship to Ms. Sasikala V from CSIR, New Delhi, India is greatefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasikala, V., Rooban, B.N., Sahasranamam, V. et al. Rutin ameliorates free radical mediated cataract by enhancing the chaperone activity of α-crystallin. Graefes Arch Clin Exp Ophthalmol 251, 1747–1755 (2013). https://doi.org/10.1007/s00417-013-2281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2281-z

Keywords

Navigation