Skip to main content

Advertisement

Log in

Effects of crystallin-β-b2 on stressed RPE in vitro and in vivo

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Crystallins are thought to play a cytoprotective role in conditions of cellular stress. The aim of this study was to determine the effects of crystallin-β-b2 (cryβ-b2) and crystallin-β-b3 (cryβ-b3) on ARPE-19 cells in vitro and on the retinal pigment epithelium (RPE) in vivo.

Methods

The influence of cryβ-b2 and cryβ-b3 on the viability, proliferation and dying of ARPE-19 was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay, bromo-2-deoxyuridine assay and life/death assay. The expressions of cryβ-b2, cryβ-b3, glial-derived neurotrophic factor (GDNF), and galectin-3 (Gal-3) in ARPE-19 cells were evaluated using immunohistochemistry (IHC), Western blotting (WB) and real-time-quantitative-PCR (qRT-PCR). To evaluate the response of cryβ-b2 and cryβ-b3 to stressed ARPE-19 cells, the cells were exposed to UV-light. In a rat model, cryβ-b2-expressing neural progenitor cells (cryβ-b2-NPCs) were injected intravitreally after retinal stress induced by optic nerve axotomy to examine whether they influence the RPE. Protein expression was examined 2 and 4 weeks postsurgery using IHC and WB.

Results

Detectable alterations of GDNF, and Gal-3 were found in ARPE-19 cells upon exposure to UV light. Adding the crystallins to the medium promoted proliferation and increased viability of ARPE-19 cells in vitro. The obtained data support the view that these crystallins possess epithelioprotective properties. Likewise, in vivo, intravitreally injected cryβ-b2 and transplanted cryβ-b2-NPCs protected RPE from indirectly induced stress.

Conclusions

The data suggest that the RPE response to retinal ganglion cell denegeration is mediated via crystallins, which may thus be used therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boehm MR, Oellers P, Thanos S (2011) Inflammation and immunology of the vitreoretinal compartment. Inflamm Allergy Drug Targets 10:283–309

    Article  PubMed  CAS  Google Scholar 

  2. Charteris DG (1995) Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol 79:953–960

    Article  PubMed  CAS  Google Scholar 

  3. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE–Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  PubMed  CAS  Google Scholar 

  4. Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363

    PubMed  CAS  Google Scholar 

  5. Xu G, Li W, Tso A (1998) Apoptosis in age-related macular degeneration. Zhonghua Yan Ke Za Zhi 34:59–61

    PubMed  CAS  Google Scholar 

  6. Wong CG, Lin NG (1989) Induction of stress proteins in cultured human RPE-derived cells. Curr Eye Res 8:537–545

    Article  PubMed  CAS  Google Scholar 

  7. Fort PE, Lampi KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92:98–103

    Article  PubMed  CAS  Google Scholar 

  8. Yoshimura N, Kikuchi T, Kuroiwa S, Gaun S (2003) Differential temporal and spatial expression of immediate early genes in retinal neurons after ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 44:2211–2220

    Article  PubMed  Google Scholar 

  9. Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG, Organisciak DT, Crabb JW (2003) Intense light exposure changes the crystallin content in retina. Exp Eye Res 76:131–133

    Article  PubMed  CAS  Google Scholar 

  10. Vázquez-Chona F, Song BK, Geisert EE Jr (2004) Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis Sci 45:2737–2746

    Article  PubMed  Google Scholar 

  11. Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ, Reddy GB (2005) Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys 444:77–83

    Article  PubMed  CAS  Google Scholar 

  12. Sax CM, Piatigorsky J (1994) Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol 69:155–201

    PubMed  CAS  Google Scholar 

  13. Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 36:435–499

    Article  PubMed  CAS  Google Scholar 

  14. Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K, Yoshikawa Y, Tanaka Y, Iwata T (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19:1683–1685

    PubMed  CAS  Google Scholar 

  15. Vanita SV, Reis A, Jung M, Singh D, Sperling K, Singh JR, Bürger J (2001) A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 38:392–396

    Article  PubMed  CAS  Google Scholar 

  16. Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, Nath A, Green WR, Goldberg MF, Zigler JS Jr, Sinha D (2005) A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn 234:36–47

    Article  PubMed  CAS  Google Scholar 

  17. Jones SE, Jomary C, Grist J, Makwana J, Neal MJ (1999) Retinal expression of gamma-crystallins in the mouse. Invest Ophthalmol Vis Sci 40:3017–3020

    PubMed  CAS  Google Scholar 

  18. Fischer D, Hauk TG, Müller A, Thanos S (2008) Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 37:471–479

    Article  PubMed  CAS  Google Scholar 

  19. Alge CS, Priglinger SG, Neubauer AS, Kampik A, Zillig M, Bloemendal H, Welge-Lussen U (2002) Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Invest Ophthalmol Vis Sci 43:3575–3582

    PubMed  Google Scholar 

  20. Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26:78–98

    Article  PubMed  CAS  Google Scholar 

  21. Richard I, Ader M, Sytnyk V, Dityatev A, Richard G, Schachner M, Bartsch U (2005) Electroporation-based gene transfer for efficient transfection of neural precursor cells. Brain Res Mol Brain Res 138:182–190

    Article  PubMed  CAS  Google Scholar 

  22. Liedtke T, Schwamborn JC, Schröer U, Thanos S (2007) Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 6:895–907

    Article  PubMed  CAS  Google Scholar 

  23. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    PubMed  CAS  Google Scholar 

  24. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  25. Strömberg I, Björklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B, Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124:401–412

    Article  PubMed  Google Scholar 

  26. Klöcker N, Bräunling F, Isenmann S, Bähr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 8:3439–3442

    Article  PubMed  Google Scholar 

  27. Thanos C, Emerich D (2005) Delivery of neurotrophic factors and therapeutic proteins for retinal diseases. Expert Opin Biol Ther 5:1443–1452

    Article  PubMed  CAS  Google Scholar 

  28. Frasson M, Picaud S, Léveillard T, Simonutti M, Mohand-Said S, Dreyfus H, Hicks D, Sabel J (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724–2734

    PubMed  CAS  Google Scholar 

  29. Alge-Priglinger CS, André S, Schoeffl H, Kampik A, Strauss RW, Kernt M, Gabius HJ, Priglinger SG (2011) Negative regulation of RPE cell attachment by carbohydrate-dependent cell surface binding of galectin-3 and inhibition of the ERK-MAPK pathway. Biochimie 93:477–488

    Article  PubMed  CAS  Google Scholar 

  30. Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273

    Article  PubMed  CAS  Google Scholar 

  31. Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y (2005) Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res 65:7292–7300

    Article  PubMed  CAS  Google Scholar 

  32. Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17

    Article  PubMed  Google Scholar 

  33. Kim J, Moon C, Ahn M, Joo HG, Jin JK, Shin T (2009) Immunohistochemical localization of galectin-3 in the pig retina during postnatal development. Mol Vis 15:1971–1976

    PubMed  CAS  Google Scholar 

  34. Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, Zick Y, Salmon I, Gabius HJ, Kiss R (2001) Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 11:12–26

    Article  PubMed  CAS  Google Scholar 

  35. Uehara F, Ohba N, Ozawa M (2001) Isolation and characterization of galectins in the mammalian retina. Invest Ophthalmol Vis Sci 42:2164–2172

    PubMed  CAS  Google Scholar 

  36. An E, Lu X, Flippin J, Devaney JM, Halligan B, Hoffman EP, Strunnikova N, Csaky K, Hathout Y (2006) Secreted proteome profiling in human RPE cell cultures derived from donors with age related macular degeneration and age matched healthy donors. J Proteome Res 5:2599–2610

    Article  PubMed  CAS  Google Scholar 

  37. Pugliese G, Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Lenti L, Sale P, Gradini R, Liu FT, Di Mario U (2000) The diabetic milieu modulates the advanced glycation end product-receptor complex in the mesangium by inducing or upregulating galectin-3 expression. Diabetes 49:1249–1257

    Article  PubMed  CAS  Google Scholar 

  38. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U (2001) Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 15:2471–2479

    Article  PubMed  CAS  Google Scholar 

  39. Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S (2001) The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun 280:1183–1188

    Article  PubMed  CAS  Google Scholar 

  40. Yamagishi S, Yonekura H, Yamamoto Y, Katsuno K, Sato F, Mita I, Ooka H, Satozawa N, Kawakami T, Nomura M, Yamamoto H (1997) Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem 272:8723–8730

    Article  PubMed  CAS  Google Scholar 

  41. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224

    Article  PubMed  CAS  Google Scholar 

  42. Stitt AW, Bhaduri T, McMullen CB, Gardiner TA, Archer DB (2000) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun 3:380–388

    Article  PubMed  CAS  Google Scholar 

  43. McFarlane S, Glenn JV, Lichanska AM, Simpson DA, Stitt AW (2005) Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium. Br J Ophthalmol 89:107–112

    Article  PubMed  CAS  Google Scholar 

  44. Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) The proteome of central and peripheral retina with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2280–2290

    Article  PubMed  Google Scholar 

  45. Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:815–822

    Article  PubMed  Google Scholar 

  46. Xi J, Farjo R, Yoshida S, Kern TS, Swaroop A, Andley UP (2003) A comprehensive analysis of the expression of crystallins in mouse retina. Mol Vis 9:410–419

    PubMed  CAS  Google Scholar 

  47. Lee H, Chung H, Lee SH, Jahng WJ (2011) Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol 48:194–201

    Article  PubMed  CAS  Google Scholar 

  48. Organisciak D, Darrow R, Gu X, Barsalou L, Crabb JW (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 82:1088–1096

    Article  PubMed  CAS  Google Scholar 

  49. Piri N, Song M, Kwong JM, Caprioli J (2007) Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res 1141:1–9

    Article  PubMed  CAS  Google Scholar 

  50. Fort PE, Freeman WM, Losiewicz MK, Singh RS, Gardner TW (2009) The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin. Mol Cell Proteomics 8:767–779

    Article  PubMed  CAS  Google Scholar 

  51. Enzmann V, Howard RM, Yamauchi Y, Whittemore SR, Kaplan HJ (2003) Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space. Invest Ophthalmol Vis Sci 44:5417–5422

    Article  PubMed  Google Scholar 

  52. Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V (2007) Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci 48:4321–4327

    Article  PubMed  Google Scholar 

  53. Qiu G, Seiler MJ, Thomas BB, Wu K, Radosevich M, Sadda SR (2007) Revisiting nestin expression in retinal progenitor cells in vitro and after transplantation in vivo. Exp Eye Res 84:1047–1059

    Article  PubMed  CAS  Google Scholar 

  54. Luthert PJ, Chong NH (1998) Photoreceptor rescue. Eye 12:591–596

    Article  PubMed  Google Scholar 

  55. Jelsma TN, Aguayo AJ (1994) Trophic factors. Curr Opin Neurobiol 4:717–725

    Article  PubMed  CAS  Google Scholar 

  56. Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768

    Article  PubMed  Google Scholar 

  57. Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y, Kwon G, Grosskreutz CL (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 102:12242–12247

    Article  PubMed  CAS  Google Scholar 

  58. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852

    Article  PubMed  CAS  Google Scholar 

  59. Hauk TG, Müller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Wissing and M. Langkamp-Flock for their skillful technical assistance, and M. Reis for typing the manuscript. The work was supported by a DFG grant to S.T. (Th 386/18) and by IZKF grants to M.R.R.B. and S.T. The authors thank English Science Editing (ESE) for native linguistic editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. R. Böhm.

Additional information

Oral presentation at the Congress of the German Society of Ophthalmology (DOG) 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M.R.R., Melkonyan, H., Oellers, P. et al. Effects of crystallin-β-b2 on stressed RPE in vitro and in vivo. Graefes Arch Clin Exp Ophthalmol 251, 63–79 (2013). https://doi.org/10.1007/s00417-012-2157-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2157-7

Keywords

Navigation