Skip to main content

Advertisement

Log in

Retrobulbar vasculature using 7-T magnetic resonance imaging with dedicated eye surface coil

  • Oculoplastics and Orbit
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the resolution and utility of using a dedicated, single-loop eye coil at 7 T to image the posterior ocular structures and vascular anatomy.

Methods

Imaging was performed on eight subjects (age range 26–54 years, four female, four male) with 7 T using a transmit head coil for excitation and a dedicated 5-cm eye surface receive coil. Acquisition parameters at 7 T for 3D spoiled gradient echo (3D-SPGR) sequences were optimized.

Results

It was possible to delineate the retina, sclera, and choroid, and fine details within the anterior and posterior segments of the eye. Retro-orbital and posterior ocular anatomy remained well visualized despite motion and susceptibility artifacts of anterior ocular structures. The ophthalmic arteries and their first-order branches were consistently visualized and improved with registration and summation of repeat scans. Furthermore, the central retinal vessels could be visualized. Intravenous gadolinium contrast reagent did not noticeably improve image quality.

Conclusions

High-resolution 7-T MRI with a dedicated eye coil can provide unique high-resolution noninvasive images of retro-orbital and posterior ocular structural and vascular anatomy and is able to resolve structures as small as the central retina vein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Georgouli T, Chang B, Nelson M, James T, Tanner S, Shelley D, Saldana M, McGonagle D (2008) Use of high-resolution microscopy coil MRI for depicting orbital anatomy. Orbit 27(2):107–114

    Article  PubMed  Google Scholar 

  2. Georgouli T, James T, Tanner S, Shelley D, Nelson M, Chang B, Backhouse O, McGonagle D (2008) High-resolution microscopy coil MR-eye. Eye 22:994–996

    Article  PubMed  CAS  Google Scholar 

  3. Ettl A, Zwrtek K, Salomonowitz DA (2000) Anatomy of the orbital apex and cavernous sinus on high-resolution magnetic resonance images. Surv Ophthalmol 44(4):303–323

    Article  PubMed  CAS  Google Scholar 

  4. Mafee MF, Rapoport M, Karimi A, Ansari SA, Shah J (2005) Orbital and ocular imaging using 3- and 1.5-T MR imaging systems. Neuroimag Clin N Am 15:1–21

    Article  Google Scholar 

  5. Kolk A, Stimmer H, Klopfer M, Wolff KD, Hohlweg-Majert B, Ploder O, Pautke C (2009) High-resolution magnetic resonance imaging with an orbital coil as an alternative to computed tomography scan as the primary imaging modality of pediatric orbital fractures. J Oral Maxillofac Surg 67:348–356

    Article  PubMed  Google Scholar 

  6. Lemke AJ, Alai-Omid M, Hengst SA, Kazi I, Felix R (2009) Eye imaging with a 3.0-T MRI using a surface coil: a study on volunteers and initial patients with uveal melanoma. Eur Radiol 16:1084–1089

    Article  Google Scholar 

  7. Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK (1999) Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 40(6):1162–1169

    PubMed  CAS  Google Scholar 

  8. Trick GL, Edwards PA, Deasi U, Morton PE, Latif Z, Berkowitz BA (2008) MRI retinovascular studies in humans: research in patients with diabetes. NMR Biomed 21:1003–1012

    Article  PubMed  Google Scholar 

  9. Li Y, Cheng H, Duong TQ (2008) Blood-flow magnetic resonance imaging of the retina. NeuroImage 39:1744–1751

    Article  PubMed  Google Scholar 

  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) In: Magnetic resonance imaging: physical principles and sequence design, Wiley-Liss, New York, pp 331–380

  11. Richdale K, Wassenaar P, Teal Bluestein K, Abduljalil A, Christoforidis JA, Lanz T, Knopp MV, Schmalbrock P (2009) 7 Tesla MR imaging of the human eye in vivo. J Magn Reson Imaging 30(5):924–932

    Article  PubMed  Google Scholar 

  12. Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 Tesla. Investig Radiol 48:568–573

    Article  Google Scholar 

  13. Schmalbrock P, Heverhagen JT, Chakeres DW, Chun H, Wassenaar PA, Mihai G Abduljalil AM, Sammet S, Koch RM, Duraj J, Knopp MV (2007) Optimization and application of simultaneous triple contrast, T1, arterial TOF and BOLD venography at 7 T. Proceedings of the International Society of Magnetic Resonance in Medicine (ABSTRACT)

  14. Wassenaar PA, Dunbar J, Chakeres DW, Meeks D, Knopp MV, Schmalbrock P (2008) Optimized post-processing of 7 T simultaneous triple contrast: T1-weighted, TOF arteriography, and BOLD venography. Proceedings of the International Society of Magnetic Resonance in Medicine (ABSTRACT)

  15. Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML (1999) T1 and T2 weighted imaging at 8 Tesla. J Comput Assist Tomogr 23:857–866

    Article  PubMed  CAS  Google Scholar 

  16. Abduljalil A, Schmalbrock P, Novak V, Chakeres DW (2003) Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field MRI. J Magn Reson Imaging 18:284–290

    Article  PubMed  Google Scholar 

  17. Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn J (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7 T. NeuroImage 32:1032–1040

    Article  PubMed  Google Scholar 

  18. Duyn JH, van Gelderen P, Li TQ, De Zwaart J, Koretskey AP, Fukunga M (2007) High-field MRI of brain cortical substructure based on signal phase. PNAS 104(28):11796–11801

    Article  PubMed  CAS  Google Scholar 

  19. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277

    PubMed  CAS  Google Scholar 

  20. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  21. Wassenaar P, Lanz T, Richdale K, Christoforidis J, Schmalbrock P, Knopp M (2008) Development and safety assessment of a dedicated eye coil for 7 T MRI. RSNA Scientific Assembly. SSK18-09 (ABSTRACT)

  22. Patz S, Bert RJ, Frederick E, Freddo TF (2007) T(1) and T(2) measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging 26:510–518

    Article  PubMed  Google Scholar 

  23. Bert RJ, Patz S, Ossiani M, Caruthers SD, Jara H, Krejza J, Freddo T (2005) High-resolution MR imaging of the human eye. Acad Radiol 13:368–378

    Article  Google Scholar 

  24. Berkowitz BA (2008) MRI of retinal and optic nerve physiology. NMR Biomed 21:927

    Article  PubMed  Google Scholar 

  25. Berkowitz BA, McDonald C, Ito Y, Tofts PS, Latif Z, Gross J (2001) Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med 46:412–416

    Article  PubMed  CAS  Google Scholar 

  26. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, De Luca I, Drobnjak DE, Flitney R, Niazy J, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219

    Article  Google Scholar 

  27. Lemke AJ, Hosten N, Wiegel T, Prinz RD, Richter M, Bechrakis NE, Foerster PI, Felix R (2001) Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil. Eur Radiol 11(12):2593–2601

    Article  PubMed  CAS  Google Scholar 

  28. Bilaniuk LT, Schenck JF, Zimmerman RA, Hart HR Jr, Foster TH, Edelstein WA, Goldberg HI, Grossman RI (1985) Ocular and orbital lesions: surface coil MR imaging. Radiology 156:669–674

    PubMed  CAS  Google Scholar 

  29. Ohnishi T, Noguchi S, Murakami N, Tajiri J, Harao M, Kawamoto H, Hoshi H, Jinnouchi S, Futami S, Nagamachi S, Watanabe K (1994) Extraocular muscles in Graves ophthalmopathy: usefulness of T2 relaxation time measurements. Radiology 190(3):857–862

    PubMed  CAS  Google Scholar 

  30. Lieb WE, Cohen SM, Merton DA, Shields JA, Mitchell DG, Goldberg BB (1991) Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol 109:527–531

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kathryn Richdale, OD, for her role and guidance in the development of MRI surface eye coil for patient use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Christoforidis.

Additional information

None of the authors have any conflicts of interest that pertain to the information presented in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoforidis, J.B., Wassenaar, P.A., Christoforidis, G.A. et al. Retrobulbar vasculature using 7-T magnetic resonance imaging with dedicated eye surface coil. Graefes Arch Clin Exp Ophthalmol 251, 271–277 (2013). https://doi.org/10.1007/s00417-012-2154-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2154-x

Keywords

Navigation