Skip to main content
Log in

Vitreous levels of oxidative stress biomarkers and the radical-scavenger α1-microglobulin/A1M in human rhegmatogenous retinal detachment

Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore oxidative stress and the radical scavenger α1-microglobulin (A1M) in the vitreous body of human eyes with primary rhegmatogenous retinal detachment (RRD).

Methods

Levels of carbonyl groups, a marker of oxidative stress, and A1M were measured by ELISA and RIA in 14 vitreous samples derived from patients suffering from RRD, and compared with 14 samples from macula hole (MH) patients. Carbonyl group and A1M levels in RRD samples were statistically related to detachment characteristics. Analysis of total protein level, SDS-PAGE, and Western blotting of A1M was also performed. In a separate experiment, mRNA expression of A1M was measured by RT-PCR in rat retina explants.

Results

Levels of carbonyl groups and A1M varied widely in RRD vitreous samples, but were significantly higher in samples derived from eyes with large detachment area and macula-off status, while the presence of vitreous hemorrhage did not show any significant correlation. Compared with MH samples, RRD samples displayed significantly higher levels of A1M, whereas changes in total protein levels and carbonyl groups were not significant. Novel forms of A1M, not previously seen in plasma, were found in the vitreous body by Western blotting. Furthermore, A1M expression was seen in rat retina explants and was upregulated after 24 h of culturing.

Conclusion

Oxidative stress is a prominent feature of human eyes with primary RRD, and is directly related to detachment severity. Affected eyes can launch a protective response in the form of the radical scavenger A1M possibly derived from the retina. The results thus indicate potential therapeutic cell loss prevention in RRD by employing the endogeneous radical scavenger A1M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  2. Faivre B, Menu P, Labrude P, Vigneron C (1998) Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autooxidation reaction. Artif Cells Blood Substit Immobil Biotechnol 26:17–26

    Article  PubMed  CAS  Google Scholar 

  3. Olsson MG, Olofsson T, Tapper H, Åkerström B (2008) The lipocalin α1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species. Free Radic Res 42:725–736

    Article  PubMed  CAS  Google Scholar 

  4. Olsson MG, Allhorn M, Larsson J, Cederlund M, Lundqvist K, Schmidtchen A, Sørensen OE, Mörgelin M, Åkerström B (2011) Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage. PLoS One 6:e27505

    Article  PubMed  CAS  Google Scholar 

  5. May K, Rosenlöf L, Olsson MG, Centlow M, Mörgelin M, Larsson I, Cederlund M, Rutardottir S, Siegmund W, Schneider H, Åkerström B, Hansson SR (2011) Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta 32:323–332

    Article  PubMed  CAS  Google Scholar 

  6. Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Åkerström B (2012) Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance and novel therapeutic opportunities for α1-microglobulin. Antiox Redox Signal [Epub ahead of print], PMID: 22324321

  7. Åkerström B, Lögdberg L (1990) An intriguing member of the lipocalin protein family: α1-microglobulin. Trends Biochem Sci 15:240–243

    Article  PubMed  Google Scholar 

  8. Åkerström B, Lödgberg L (2006) α1-microglobulin. In: Borregaard N, Flower DR, Salier J-P (eds) Lipocalins. Landes Bioscience, Georgetown, pp 110–120

    Google Scholar 

  9. Vincent C, Marceau M, Blangarin P, Bouic P, Madjar JJ, Revillard JP (1987) Purification of α1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with α1- microglobulin synthesized by human hepatocytes. Eur J Biochem 165:699–704

    Article  PubMed  CAS  Google Scholar 

  10. Tejler L, Eriksson S, Grubb A, Åstedt B (1978) Production of protein HC by human fetal liver explants. Biochim Biophys Acta 542:506–514

    Article  PubMed  CAS  Google Scholar 

  11. DeMars DD, Katzmann JA, Kimlinger TK, Calore JD, Tracy RP (1989) Simultaneous measurement of total and IgA-conjugated α1-microglobulin by a combined immunoenzyme/immunoradiometric assay technique. Clin Chem 35:766–772

    PubMed  CAS  Google Scholar 

  12. Berggård T, Thelin N, Falkenberg C, Enghild JJ, Åkerström B (1997) Prothrombin, albumin and immunoglobulin A form covalent complexes with α1-microglobulin in human plasma. Eur J Biochem 245:676–683

    Article  PubMed  Google Scholar 

  13. Larsson J, Wingårdh K, Berggård T, Davies JR, Lögdberg L, Strand SE, Åkerström B (2001) Distribution of iodine 125- labeled α1-microglobulin in rats after intravenous injection. J Lab Clin Med 137:165–175

    Article  PubMed  CAS  Google Scholar 

  14. Allhorn M, Klapyta A, Åkerström B (2005) Redox properties of the lipocalin α1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Free Radic Biol Med 38:557–567

    Article  PubMed  CAS  Google Scholar 

  15. Åkerström B, Maghzal GJ, Winterbourn CC, Kettle AJ (2007) The lipocalin α1-microglobulin has radical scavenging activity. J Biol Chem 282:31493–31503

    Article  PubMed  Google Scholar 

  16. Olsson MG, Allhorn M, Olofsson T, Åkerström B (2007) Up-regulation of α1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines. Free Radic Biol Med 42:842–851

    Article  PubMed  CAS  Google Scholar 

  17. Varma SD, Chand D, Sharma YR, Kuck JF, Richards RD (1984) Oxidative stress on lens and cataract formation—role of light and oxygen. Curr Eye Res 3:35–57

    Article  PubMed  CAS  Google Scholar 

  18. Varma SD, Kovtun S, Hegde KR (2011) Role of ultraviolet irradiation and oxidative stress in cataract formation—medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens 37:233–245

    Article  PubMed  Google Scholar 

  19. Beebe DC, Holekamp NM, Shui YB (2010) Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 44:155–165

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Hayden MR, Sowers S, Bagree SV, Sowers JR (2010) Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxidative Med Cell Longev 3:392–403

    Article  Google Scholar 

  21. Yamagishi S, Matsui T (2011) Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy. Curr Pharm Biotechnol 12:362–368

    Article  PubMed  CAS  Google Scholar 

  22. Lopes de Faria JB, Silva KC, Lopes de Faria JM (2011) The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res 34:413–422

    Article  PubMed  CAS  Google Scholar 

  23. Liutkeviciene R, Lesauskaite V, Asmoniene V, Zaliuniene D, Jasinskas V (2010) Factors determining age-related macular degeneration: a current view. Medicina (Kaunas) 46:89–94

    Google Scholar 

  24. Kaarniranta K, Salminen A, Haapasalo A, Soininen H, Hiltunen M (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24:615–631

    PubMed  CAS  Google Scholar 

  25. Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28:1–18

    Article  PubMed  CAS  Google Scholar 

  26. Roh MI, Murakami Y, Thanos A, Vavvas DG, Miller JW (2011) Edaravone, an ROS scavenger, ameliorates photoreceptor cell death after experimental retinal detachment. Invest Ophthalmol Vis Sci 52:3825–3831

    Article  PubMed  CAS  Google Scholar 

  27. Mantopoulos D, Murakami Y, Comander J, Thanos A, Roh M, Miller JW, Vavvas DG (2011) Tauroursodeoxycholic acid (TUDCA) protects photoreceptors from cell death after experimental retinal detachment. PLoS One 6:e24245

    Article  PubMed  CAS  Google Scholar 

  28. Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW, Vavvas DG (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. PNAS 107(50):21695–21700

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  31. Åkerström B (1985) Immunological analysis of α1-microglobulin in different mammalian and chicken serum. α1-microglobulin is 5–8 kilodaltons larger in primates. J Biol Chem 260:4839–4844

    PubMed  Google Scholar 

  32. Björck L, Cigen R, Berggård B, Löw B, Berggård I (1977) Relationships between β2-microglobulin and alloantigens coded for by the major histocompatibility complexes of the rabbit and the guinea pig. Scand J Immunol 6:1063–1069

    Article  PubMed  Google Scholar 

  33. Greenwood FC, Hunter WM, Glover JS (1963) The preparation of I-131- labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123

    PubMed  CAS  Google Scholar 

  34. Wester L, Johansson MU, Åkerström B (1997) Physicochemical and biochemical characterization of human α1-microglobulin expressed in baculovirus-infected insect cells. Protein Expr Purif 11:95–103

    Article  PubMed  CAS  Google Scholar 

  35. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  36. Berggård I, Bearn AG (1968) Isolation and properties of a low molecular weight β2-globulin occurring in human biological fluids. J Biol Chem 243:4095–4103

    PubMed  Google Scholar 

  37. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23:361–366

    Article  PubMed  CAS  Google Scholar 

  38. Ekström B, Peterson PA, Berggård I (1975) A urinary and plasma α1-glycoprotein of low molecular weight: isolation and some properties. Biochem Biophys Res Commun 65:1427–1433

    Article  PubMed  Google Scholar 

  39. Escribano J, Grubb A, Calero M, Mendez E (1991) The protein HC chromophore is linked to the cysteine residue at position 34 of the polypeptide chain by a reduction-resistant bond and causes the charge heterogeneity of protein HC. J Biol Chem 266:15758–15763

    PubMed  CAS  Google Scholar 

  40. Sala A, Campagnoli M, Perani E, Romano A, Labò S, Monzani E, Minchiotti L, Galliano M (2004) Human α1-microglobulin is covalently bound to kynurenine-derived chromophores. J Biol Chem 279:51033–51041

    Article  PubMed  CAS  Google Scholar 

  41. Allhorn M, Berggård T, Nordberg J, Olsson ML, Åkerström B (2002) Processing of the lipocalin α1-microglobulin by hemoglobin induces heme-binding and heme-degradation properties. Blood 99:1894–1901

    Article  PubMed  Google Scholar 

  42. Garner B, Shaw DC, Lindner RA, Carver JA, Truscott RJ (2000) Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract. Biochim Biophys Acta 1476:265–278

    Article  PubMed  CAS  Google Scholar 

  43. Olsson MG, Centlow M, Rutardottir S, Stenfors I, Larsson J, Hosseini-Maaf B, Olsson ML, Hansson SR, Åkerström B (2010) Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger α1-microglobulin in preeclampsia. Free Radic Biol Med 48:284–291

    Article  PubMed  CAS  Google Scholar 

  44. Edaravone Acute Infarction Study Group (2003) Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis 15:222–229

    Article  Google Scholar 

  45. Dilsiz N, Sahaboglu A, Yildiz MZ, Reichenbach A (2006) Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefes Arch Clin Exp Ophthalmol 244:627–633

    Article  PubMed  CAS  Google Scholar 

  46. Fisher SK, Lewis GP (2003) Muller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vis Res 43:887–897

    Article  PubMed  Google Scholar 

Download references

Supported by

The Faculty of Medicine, University of Lund, The Swedish Research Council, The Princess Margaretas Foundation for Blind Children, The Swedish Eye Foundation, Österlunds Foundation, and A1M Pharma AB.

Financial interests

The authors do not have any conflicting financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Åkerström.

Additional information

The authors have full control of all primary data, and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cederlund, M., Ghosh, F., Arnér, K. et al. Vitreous levels of oxidative stress biomarkers and the radical-scavenger α1-microglobulin/A1M in human rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 251, 725–732 (2013). https://doi.org/10.1007/s00417-012-2113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2113-6

Keywords

Navigation