Skip to main content

Advertisement

Log in

Multimodal morphological and functional characterization of Malattia Leventinese

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To analyze the morphological and functional characteristics of malattia leventinese.

Methods

This was a chart review of patients with Malattia Leventinese. All patients underwent a complete ophthalmologic examination, including best-corrected visual acuity (BCVA), fundus autofluorescence (FAF), fluorescein angiography (FA), indocyanine green angiography (ICGA), and optical coherence tomography (OCT). Microperimetry and Preferential Hyperacuity Perimeter (PHP) were performed in a subset of patients.

Results

Twelve eyes of six patients were included. BCVA ranged from 20/25 to 20/200. The largest drusen were round, not radially distributed, localized in the perimacular area and around the optic disc. The smallest drusen were not round, radially distributed, mostly localized temporally to the macula. FAF revealed an intense autofluorescence of large drusen. On both FA and ICGA, large round drusen turned to hyperfluorescent in the late phase, while small radial drusen progressively decreased their fluorescence. OCT showed the large round drusen as focal or diffuse deposition of hyperreflective material between the RPE and Bruch membrane within the macula, determining focal dome-shaped or diffuse RPE elevation respectively, and the small radial drusen, which ranged from irregular slight thickening of the RPE/Bruch membrane complex to sawtooth RPE elevation. In three patients (six eyes) that underwent microperimetry and PHP, there was a good correspondence between macular sensitivity and PHP score. Functional impairment correlated topographically to sub-RPE deposition of drusenoid material.

Conclusions

In this series, large round drusen of Malattia Leventinese appeared similar to drusen in age-related macular degeneration, while small radial drusen of Malattia Leventinese shared similarities with early-onset cuticular drusen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gass JD (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90:206–217

    Article  PubMed  CAS  Google Scholar 

  2. Pauleikhoff D, Barondes MJ, Minassian D, Chisholm IH, Bird AC (1990) Drusen as risk factors in age-related macular disease. Am J Ophthalmol 109:38–43

    PubMed  CAS  Google Scholar 

  3. Vogt A (1925) Die Ophthalmoskopie im rotfreien Licht. In: Graefe A, Saemisch T (eds) Handbuch der gesamten Augenheilkunde. Untersuchungsmethoden, 3rd ed. Verlag von Wilhelm Engelman, Leipzig, pp 1–118

    Google Scholar 

  4. Piguet B, Haimovici R, Bird AC (1995) Dominantly inherited drusen represent more than one disorder: a historical review. Eye 9:34–41

    Article  PubMed  Google Scholar 

  5. Stone EM, Lotery AJ, Munier FL, Héon E, Piguet B, Guymer RH, Vandenburgh K, Cousin P, Nishimura D, Swiderski RE, Silvestri G, Mackey DA, Hageman GS, Bird AC, Sheffield VC, Schorderet DF (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202

    Article  PubMed  CAS  Google Scholar 

  6. Matsumoto M, Traboulsi EI (2001) Dominant radial drusen and Arg345Trp EFEMP1 mutation. Am J Ophthalmol 131:810–812

    Article  PubMed  CAS  Google Scholar 

  7. Michaelides M, Jenkins SA, Brantley MA Jr, Andrews RM, Waseem N, Luong V, Gregory-Evans K, Bhattacharya SS, Fitzke FW, Webster AR (2006) Maculopathy due to the R345W substitution in fibulin-3: distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci 47:3085–3097

    Article  PubMed  Google Scholar 

  8. Marmorstein LY, Munier FL, Arsenijevic Y, Schorderet DF, McLaughlin PJ, Chung D, Traboulsi E, Marmorstein AD (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA 99:13067–13072

    Article  PubMed  CAS  Google Scholar 

  9. Guigui B, Leveziel N, Martinet V, Massamba N, Sterkers M, Coscas G, Souied EH (2011) Angiography features of early onset drusen. Br J Ophthalmol 95:238–244

    Article  PubMed  Google Scholar 

  10. Landa G, Rosen RB, Garcia PM, Seiple WH (2009) Combined three-dimensional spectral OCT/SLO topography and microperimetry: steps toward achieving functional spectral OCT/SLO. Ophthalmic Res 43:92–98

    Article  PubMed  Google Scholar 

  11. Alster Y, Bressler NM, Bressler SB, Brimacombe JA, Crompton RM, Duh YJ, Gabel VP, Heier JS, Ip MS, Loewenstein A, Packo KH, Stur M, Toaff T, Preferential Hyperacuity Perimetry Research Group (2005) Preferential hyperacuity perimeter (PreView) for detecting choroidal neovascularization study. Ophthalmology 112:1758–1765

    Article  PubMed  Google Scholar 

  12. Bloom SM, Singal IP (2011) The outer Bruch membrane layer: A previously undescribed spectral-domain optical coherence tomography finding. Retina 31:316–323

    Article  PubMed  Google Scholar 

  13. Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB (2009) Outer retinal tubulation: A novel optical coherence tomography finding. Arch Ophthalmol 127:1596–1602

    Article  PubMed  Google Scholar 

  14. Cohen SY, Dubois L, Nghiem-Buffet S, Ayrault S, Fajnkuchen F, Guiberteau B, Delahaye-Mazza C, Quentel G, Tadayoni R (2010) Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol 150:211–217

    Article  PubMed  Google Scholar 

  15. von Ruckmann A, Fitzke FW, Bird AC (1999) Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol 237:1–9

    Article  Google Scholar 

  16. von Ruckmann A, Schmidt KG, Fitzke FW, Bird AC, Jacobi KW (1998) Fundus autofluorescence in patients with hereditary macular dystrophies, Malattia Leventinese, familial dominant and aged-related drusen. Klin Monatsbl Augenheilkd 213:81–86

    Article  Google Scholar 

  17. von Ruckmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age related macular disease imaged with a scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 38:478–486

    Google Scholar 

  18. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC (2002) Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am J Ophthalmol 133:341–349

    Article  PubMed  Google Scholar 

  19. Kitagawa K, Nishida S, Ogura Y (1989) In vivo quantitation of autofluorescence in human retinal pigment epithelium. Ophthalmologica 199:116–121

    Article  PubMed  CAS  Google Scholar 

  20. Pauleikhoff D, Zuels S, Sheraidah GS, Marshall J, Wessing A, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553

    PubMed  CAS  Google Scholar 

  21. Arnold JJ, Quaranta M, Soubrane G, Sarks SH, Coscas G (1997) Indocyanine green angiography of drusen. Am J Ophthalmol 124:344–356

    PubMed  CAS  Google Scholar 

  22. Scheider A, Neuhauser L (1992) Fluorescence characteristics of drusen during indocyanine-green angiography and their possible correlation with choroidal perfusion. Ger J Ophthalmol 1:328–334

    PubMed  CAS  Google Scholar 

  23. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    PubMed  CAS  Google Scholar 

  24. Li CM, Clark ME, Rudolf M, Curcio CA (2007) Distribution and composition of esterified and unesterified cholesterol in extra-macular drusen. Exp Eye Res 85:192–201

    Article  PubMed  CAS  Google Scholar 

  25. Russell SR, Gupta RR, Folk JC, Mullins RF, Hageman GS (2004) Comparison of color to fluorescein angiographic images from patients with early-adult onset grouped drusen suggests drusen substructure. Am J Ophthalmol 137:924–930

    Article  PubMed  Google Scholar 

  26. Collins ET (1913) A pathological report upon a case of Doyne’s chorioditis (‘Honeycomb’ or ‘family’ choroiditis). The ophthalmoscope 11:537–538

    Google Scholar 

  27. Dusek J, Streicher T, Schmidt K (1982) Hereditary drusen of Bruch’s membrane II: Studies of semi-thin sections and electron microscopy results. Klin Monatsbl Augenheilkd 181:79–83

    Article  PubMed  CAS  Google Scholar 

  28. Fu L, Garland D, Yang Z, Shukla D, Rajendran A, Pearson E, Stone EM, Zhang K, Pierce EA (2007) The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Hum Mol Genet 16:2411–2422

    Article  PubMed  CAS  Google Scholar 

  29. Leng T, Rosenfeld PJ, Gregori G, Puliafito CA, Punjabi OS (2009) Spectral domain optical coherence tomography characteristics of cuticular drusen. Retina 29:988–993

    Article  PubMed  Google Scholar 

  30. Querques G, Guigui B, Leveziel N, Querques L, Coscas G, Soubrane G, Souied EH (2011) Insights into pathology of cuticular drusen from integrated confocal scanning laser ophthalmoscopy imaging and corresponding spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 249:1617–1625

    Article  PubMed  Google Scholar 

  31. Evans K, Gregory CY, Wijesuriya SD, Kermani S, Jay MR, Plant C, Bird AC (1997) Assessment of the phenotypic range seen in doyne honeycomb retinal dystrophy. Arch Ophthalmol 115:904–910

    Article  PubMed  CAS  Google Scholar 

  32. Gass JDM, Jallow S, Davis B (1985) Adult vitelliform macular detachment occurring in patients with basal laminar drusen. Am J Ophthalmol 99:445–459

    PubMed  CAS  Google Scholar 

Download references

Financial or material support for the research and the work

None.

The authors have no proprietary interest in the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Querques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querques, G., Guigui, B., Leveziel, N. et al. Multimodal morphological and functional characterization of Malattia Leventinese. Graefes Arch Clin Exp Ophthalmol 251, 705–714 (2013). https://doi.org/10.1007/s00417-012-2106-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2106-5

Keywords

Navigation