Skip to main content
Log in

Analysis of internal astigmatism and higher order aberrations in eyes implanted with a new diffractive multifocal toric intraocular lens

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL

Methods

Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek).

Results

A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed.

Conclusions

The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holland E, Lane S, Horn JD, Ernest P, Arleo R, Miller KM (2010) The AcrySof toric intraocular lens in subjects with cataracts and corneal astigmatism; a randomized, subject-masked, parallel-group, 1-year study. Ophthalmology 117:2104–2111

    Article  PubMed  Google Scholar 

  2. Alió JL, Agdeppa MCC, Pongo VC, El Kady B (2010) Microincision cataract surgery with toric intraocular lens implantation for correcting moderate and high astigmatism: pilot study. J Cataract Refract Surg 36:44–52

    Article  PubMed  Google Scholar 

  3. Mendicute J, Irigoyen C, Ruiz M, Illarramendi I, Ferrer-Blasco T, Montés-Micó R (2009) Toric intraocular lens versus opposite clear corneal incisions to correct astigmatism in eyes having cataract surgery. J Cataract Refract Surg 35:451–458

    Article  PubMed  Google Scholar 

  4. Bauer NJC, de Vries NE, Webers CAB, Hendrikse F, Nuijts RMMA (2008) Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J Cataract Refract Surg 34:1483–1488

    Article  PubMed  Google Scholar 

  5. Mendicute J, Irigoyen C, Aramberri J, Ondarra A, Montés-Micó R (2008) Foldable toric intraocular lens for astigmatism correction in cataract patients. J Cataract Refract Surg 34:601–607

    Article  PubMed  Google Scholar 

  6. De Silva DJ, Ramkissoon YD, Bloom PA (2006) Evaluation of a toric intraocular lens with a Z-haptic. J Cataract Refract Surg 32:1492–1498

    Article  PubMed  Google Scholar 

  7. Till JS, Yoder PR, Wilcox TK, Spielman JL (2002) Toric intraocular lens implantation: 100 consecutive cases. J Cataract Refract Surg 28:295–301

    Article  PubMed  Google Scholar 

  8. Ruhswurm I, Scholz U, Zehetmayer M, Hanselmayer G, Vass C, Skorpik C (2000) Astigmatism correction with a foldable toric intraocular lens in cataract patients. J Cataract Refract Surg 26:1022–1027

    Article  PubMed  CAS  Google Scholar 

  9. Alió JL, Piñero DP, Tomás J, Alesón A (2011) Vector analysis of astigmatic changes after cataract surgery with toric intraocular lens implantation. J Cataract Refract Surg 37:1038–1049

    Article  PubMed  Google Scholar 

  10. Alió JL, Piñero DP, Tomás J, Plaza-Puche AB (2011) Vector analysis of astigmatic changes after cataract surgery with implantation of a new toric multifocal intraocular lens. J Cataract Refract Surg 37:1217–1229

    Article  PubMed  Google Scholar 

  11. Mojzis P, Piñero DP, Studeny P, Tomás J, Korda V, Plaza-Puche AB, Alió JL (2011) Comparative analysis of clinical outcomes obtained with a new diffractive multifocal toric intraocular lens implanted through two types of corneal incisions. J Refract Surg 27:648–657

    Article  PubMed  Google Scholar 

  12. Chang FD (2008) Comparative rotational stability of single-piece open-loop acrylic and plate-haptic silicone toric intraocular lenses. J Cataract Refract Surg 34:1842–1847

    Article  PubMed  Google Scholar 

  13. Prinz A, Neumayer T, Bueh W, Vock L, Menapace R, Findl O, Georgopoulos M (2011) Rotational stability and posterior capsule opacification of a plate-haptic and an open-loop-haptic intraocular lens. J Cataract Refract Surg 37:251–257

    Article  PubMed  Google Scholar 

  14. Viestenz A, Seitz B, Langenbucher A (2005) Evaluating the eye's rotational stability during standard photography; effect on determining the axial orientation of toric intraocular lenses. J Cataract Refract Surg 31:557–561

    Article  PubMed  Google Scholar 

  15. Chang DF (2003) Early rotational stability of the longer Staar toric intraocular lens; fifty consecutive cases. J Cataract Refract Surg 29:935–940

    Article  PubMed  Google Scholar 

  16. Nguyen TM, Miller KM (2000) Digital overlay technique for documenting toric intraocular lens axis orientation. J Cataract Refract Surg 26:1496–1504

    Article  PubMed  CAS  Google Scholar 

  17. Weinand F, Jung A, Stein A, Pfützner A, Becker R, Pavlovic S (2007) Rotational stability of a single-piece hydrophobic acrylic intraocular lens: new method for high-precision rotation control. J Cataract Refract Surg 33:800–803

    Article  PubMed  Google Scholar 

  18. Shah GD, Praveen MR, Vasavada AR, Rampal NV, Vasavada VA, Asnani PK, Pandita D (2009) Software-based assessment of postoperative rotation of toric intraocular lens. J Cataract Refract Surg 35:413–418

    Article  PubMed  Google Scholar 

  19. Wolffsohn JS, Buckhurst PJ (2010) Objective analysis of toric intraocular lens rotation and centration. J Cataract Refract Surg 36:778–782

    Article  PubMed  Google Scholar 

  20. Gualdi L, Cappello V, Giordano C (2009) The use of Nidek OPD Scan II wavefront aberrometry in toric intraocular lens implantation. J Refract Surg 25(suppl 1):S110–S115

    PubMed  Google Scholar 

  21. Ligabue EA, Giordano C (2009) Assessing visual quality with the point spread function using the Nidek OPD Scan II. J Refract Surg 25(suppl 1):S104–S109

    PubMed  Google Scholar 

  22. Carey PJ, Leccisotti A, McGilligan VE, Goodall EA, Moore CB (2010) Assessment of toric intraocular lens alignment by a refractive power/corneal analyzer system and slitlamp observation. J Cataract Refract Surg 36:222–229

    Article  PubMed  Google Scholar 

  23. Ramón ML, Piñero DP, Pérez-Cambrodí RJ (2012) Correlation between visual performance, quality of life and intraocular aberrometric profile in patients implanted with rotationally asymmetric multifocal intraocular lenses. J Refract Surg 28:93–99

    Article  PubMed  Google Scholar 

  24. Alió JL, Piñero DP, Plaza-Puche AB, Amparo F, Jiménez R, Rodríguez-Prats JL, Javaloy J (2011) Visual and optical performance with two different diffractive multifocal intraocular lenses compared to a monofocal lens. J Refract Surg 27:570–581

    Article  PubMed  Google Scholar 

  25. Alió JL, Elkady B, Ortiz D (2010) Corneal optical quality following sub 1.8 mm micro-incision cataract surgery vs 2.2 mm mini-incision coaxial phacoemulsification. Middle East Afr J Ophthalmol 17:94–99

    PubMed  Google Scholar 

  26. Sicam VA, Dubbelman M, Van de Heijde RG (2006) Spherical aberration of the anterior and posterior surfaces of the human cornea. J Opt Soc Am A Opt Image Sci Vis 23:544–549

    Article  PubMed  Google Scholar 

  27. Charman WN, Montés-Micó R, Radhakrishnan H (2008) Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses. J Refract Surg 24:280–286

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Piñero.

Additional information

The authors have no financial or proprietary interest in any product, method, or material described herein.

All the authors have full control of all primary data, and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review the data of the current study if requested.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojzis, P., Piñero, D.P., Ctvrteckova, V. et al. Analysis of internal astigmatism and higher order aberrations in eyes implanted with a new diffractive multifocal toric intraocular lens. Graefes Arch Clin Exp Ophthalmol 251, 341–348 (2013). https://doi.org/10.1007/s00417-012-2061-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2061-1

Keywords

Navigation