Skip to main content

Advertisement

Log in

The subconjunctival use of cetuximab and bevacizumab in inhibition of corneal angiogenesis

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of cetuximab and bevacizumab on experimental rat model of corneal angiogenesis.

Methods

The right eyes of 28 male Sprague–Dawley rats were included in silver nitrate cauterization-induced corneal angiogenesis model. They were divided into four groups: (1) silver nitrate cauterization-induced and 0.15 ml serum physiologic was given to the angiogenesis group, (2) bevacizumab was given 1.25 mg to the bevacizumab group, (3) cetuximab was given 5 mg to the cetuximab group, and (4) 1.25 mg bevacizumab plus 5 mg cetuximab were given to the bevacizumab + cetuximab group. All eyes were exposed to the treatment on days 1, 4, and 7 of the experiment, and drugs were given subconjunctivally. The left eyes were untreated and used as sham. On day 8, the treated eyes were evaluated biomicroscopically. Then, the rats were sacrificed, and corneal specimens were prepared for histopathologic examinations.

Results

The degree of angiogenesis inhibition was observed as 50.8 % in bevacizumab, 54.3 % in cetuximab, and 15.8 % in bevacizumab + cetuximab groups by biomicroscopic evaluation. According to the histopathological and immunohistochemical findings obtained from the present study, the amount of angiogenesis was determined to have decreased considerably in both the bevacizumab and cetuximab groups; also, relatively less inhibiton was observed in the bevacizumab + cetuximab group.

Conclusion

Subconjunctival injection of cetuximab and bevacizumab is effective in reducing corneal angiogenesis in silver nitrate cauterization induced angiogenesis model of rats. Further investigation is needed to assess the potential side-effects of the drugs, especially cetuximab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cursiefen C, Masli S, Ng TF, Dana MR, Bornstein P, Lawler J, Streilein JW (2004) Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 45:1117–1124

    Article  PubMed  Google Scholar 

  2. Cursiefen C, Maruyama K, Jackson DG, Streilein JW, Kruse FE (2006) Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25:443–447

    Article  PubMed  Google Scholar 

  3. Bakri SJ, Cameron JD, McCannel CA, Pulido JS, Marler RJ (2006) Absence of histologic retinal toxicity of intravitreal bevacizumab in a rabbit model. Am J Ophthalmol 142:162–164

    Article  PubMed  CAS  Google Scholar 

  4. Yamazaki Y, Takani K, Atoda H, Morita T (2003) Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor-2). J Biol Chem 278:51985–51988

    Article  PubMed  CAS  Google Scholar 

  5. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  6. Bock F, König Y, Dietrich T, Zimmermann P, Baier M, Cursiefen C (2007) Inhibition of angiogenesis in the anterior chamber of the eye. Ophthalmologe 104:336–344

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N, Davis Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  PubMed  CAS  Google Scholar 

  8. Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS (2005) Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology 112:1035–1047

    Article  PubMed  Google Scholar 

  9. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  10. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  PubMed  CAS  Google Scholar 

  11. Blick SK, Scott LJ (2007) Cetuximab: a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 67(17):2585–2607

    Article  PubMed  CAS  Google Scholar 

  12. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311

    Article  PubMed  CAS  Google Scholar 

  13. Green CJ (1982) Animal anaesthesia. Laboratory Animals Ltd., London, pp 45–58

    Google Scholar 

  14. Mahoney J, Waterbury LD (1985) Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 4(5):531–535

    Article  PubMed  CAS  Google Scholar 

  15. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  18. Shojaei F, Ferrara N (2007) Antiangiogenesis to treat cancer and intraocular neovascular disorders. Lab Invest 87:227–320

    Article  PubMed  CAS  Google Scholar 

  19. Lyn SS, Cheng CM (2007) Bevacizumab for neovascular ocular diseases. Ann Pharmacother 41:614–625

    Article  Google Scholar 

  20. Joussen AM, Poulaki V, Mitsiades N, Stechschulte SU, Kirchhof B, Dartt DA, Fong GH, Rudge J, Wiegand SJ, Yancopoulos GD, Adamis AP (2003) VEGF-dependent conjunctivalization of the corneal surface. Invest Ophthalmol Vis Sci 44:117–123

    Article  PubMed  Google Scholar 

  21. Schrag D (2004) The price tag on progress–chemotherapy for colorectal cancer. N Engl J Med 351(4):317–319

    Article  PubMed  CAS  Google Scholar 

  22. Erdurmus M, Totan Y (2007) Subconjunctival bevacizumab for corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 245(10):1577–9

    Article  PubMed  CAS  Google Scholar 

  23. Avery RL, Pieramici DJ, Rabena MD (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113:363–372

    Article  PubMed  Google Scholar 

  24. Spaide RF, Fisher YL (2006) Intravitreal bevacizumab(Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26:275–278

    Article  PubMed  Google Scholar 

  25. Manzano RP, Peyman GA, Khan P, Carvounis P, Kivilcim M (2007) Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). BrJ Ophthalmol 91:804–807

    Article  Google Scholar 

  26. Dratviman-Storobinsky O, Lubin BC, Hasanreisoglu M, Goldenberg-Cohen N (2009) Effect of subconjuctival and intraocular bevacizumab injection on angiogenic gene expression levels in a mouse model of corneal neovascularization. Mol Vis 15:2326–2338

    PubMed  CAS  Google Scholar 

  27. Bohling T, Hatva E, Kujala M, Claesson-Welsh L, Alitalo K, Haltia M (1996) Expression of growth factors and growth factor receptors in capillary hemangioblastoma. J Neuropathol Exp Neurol 55:522–7

    Article  PubMed  CAS  Google Scholar 

  28. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4:121–33

    PubMed  CAS  Google Scholar 

  29. Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60:2926–2935

    PubMed  CAS  Google Scholar 

  30. Mendelsohn J (2000) Blockade of receptors for growth factors: an anticancer therapy the fourth annual Joseph H Burchenal American Association of Cancer Research Clinical Research Award lecture. Clin Cancer Res 6:747–753

    PubMed  CAS  Google Scholar 

  31. Kerbel RS, Viloria-Petit A, Okada F, Rak J (1998) Establishing a link between oncogenes and tumor angiogenesis. Mol Med 4:286–295

    PubMed  CAS  Google Scholar 

  32. Guler M, Yilmaz T, Ozercan I, Elkiran T (2009) The ınhibitory effects of trastuzumab on corneal neovascularization. Am J Ophthalmol 147:703–708

    Article  PubMed  Google Scholar 

  33. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature (Lond) 363:83–85

    Article  CAS  Google Scholar 

  34. Strieter RM, Kunkel SL, Elner VM, Martonyi CL, Koch AE, Polverini PJ, Elner SG (1992) Interleukin-8.A corneal factor that induces neovascularization. Am J Pathol 141:1279–1284

    PubMed  CAS  Google Scholar 

  35. Hoffart L, Matonti F, Conrath J, Daniel L, Ridings B, Masson GS, Chavane F (2010) Inhibition of corneal neovascularization after alkali burn: comparison of different doses of bevacizumab in monotherapy or associated with dexamethasone. Clin Exp Ophthalmol 38(4):346–352

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by Scientific Research Fund of Dicle University. The authors have no financial interest in any of the products mentioned in the manuscript. We would like to thank English Lecturer Ibrahim Tunik for his checking the manuscript in terms of its grammar and spelling errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selcuk Tunik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunik, S., Nergiz, Y., Keklikci, U. et al. The subconjunctival use of cetuximab and bevacizumab in inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 250, 1161–1167 (2012). https://doi.org/10.1007/s00417-012-2008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2008-6

Keywords

Navigation