Skip to main content

Advertisement

Log in

Fluorescein angiography, optical coherence tomography, and histopathologic findings in a VEGF165 animal model of retinal angiogenesis

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To establish an animal model of retinal neovascularization using vascular endothelial growth factor (VEGF165) and analyze the model using optical coherence tomography (OCT), fluorescein angiography (FA), and histopathologic evaluation.

Methods

Twelve rabbits were divided into groups as follows: group 1 (n = 3), sham intravitreous injections of 0.1 ml of balanced saline; group 2 (n = 6), one 10-μg intravitreal injection of VEGF165 on day 0; and group 3 (n = 3), two 10-μg intravitreal injections of VEGF165, one on day 0 and one on day 7. Follow-up evaluations (days 0, 3, 7, 14, 21, 28) included obtaining fundus color photographs and FA, OCT, and histopathologic examinations. Eyes were enucleated and stained with hematoxylin and eosin (H&E).

Results

One injection of VEGF (group 2) was associated with dilatation and tortuosity of the retinal blood vessels that developed within 72 h. Retinal neovascularization was present by day 7 and regressed by day 14. However, even on day 28, the capillaries were still tortuous. Two VEGF injections (group 3) caused increased leakage and neovascularization up to day 14; severe capillary nonperfusion was seen during week 4. At the end of the follow-up period, OCT and histopathologic examination of group 3 showed peripapillary tractional retinal detachments. By day 7, the differences between the retinal thickness seen on OCT in groups 2 and 3 and the group 1 control group were significant (p < 0.001). The histologic findings showed increased vessel size in groups 2 and 3 by days 14 and 28 compared with the controls.

Conclusions

FA, OCT, and histopathologic findings showed that this retinal neovascularization model is efficient, sustainable, and reliable. One injection of VEGF165 created neovascularization that peaked after 1 week; two injections created more intense neovascularization that evolved to retinal detachments after 4 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Friedman DS, O’Colmain BJ, Muñoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Congdon N (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Article  PubMed  Google Scholar 

  2. Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF, Eye Diseases Prevalence Research Group (2004) The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122:552–563

    Article  PubMed  Google Scholar 

  3. Aiello LP, Avery RL, Arrigg PG, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, Nguyen HV, Aiello LM, Ferrara N, King GL (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  PubMed  CAS  Google Scholar 

  4. Wells JA, Murthy R, Chibber R, Nunn A, Molinatti PA, Kohner EM, Gregor ZJ (1996) Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation. Br J Ophthalmol 80:363–366

    Article  PubMed  CAS  Google Scholar 

  5. Galan A, Ferlin A, Caretti L, Buson G, Sato G, Frigo AC, Foresta C (2010) Association of age-related macular degeneration with polymorphisms in vascular endothelial growth factor and its receptor. Ophthalmology 117:1769–1774

    Article  PubMed  Google Scholar 

  6. Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32

    PubMed  CAS  Google Scholar 

  7. Guerrin M, Moukadiri H, Chollet P, Moro F, Dutt K, Malecaze F, Plouet J (1995) Vasculotropin/vascular endothelial growth factor is an autocrine growth factor for human retinal pigment epithelial cells cultured in vitro. J Cell Physiol 164:385–394

    Article  PubMed  CAS  Google Scholar 

  8. Veikkola T, Alitalo K (1999) VEGFs, receptors and angiogenesis. Semin Cancer Biol 9:211–220

    Article  PubMed  CAS  Google Scholar 

  9. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326

    PubMed  CAS  Google Scholar 

  10. Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, Hida T, Oguchi Y, Ambati J, Miller JW, Gragoudas ES, Ng YS, D’Amore PA, Shima DT, Adamis AP (2003) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198:483–489

    Article  PubMed  CAS  Google Scholar 

  11. Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG, Amano S, Hida T, Oguchi Y, Adamis AP (2003) VEGF 164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 44:2155–2162

    Article  PubMed  Google Scholar 

  12. Sampaio RB, Mendonca RJ, Simioni AR, Costa RA, Siqueira RC, Correa VM, Tedesco AC, Haddad A, Coutinho Netto J, Jorge R (2010) Rabbit retinal neovascularization induced by latex angiogenic-derived fraction: an experimental model. Curr Eye Res 35:56–62

    Article  PubMed  CAS  Google Scholar 

  13. Tano Y, Chandler DB, Machemer R (1981) Retinal neovascularization after intravitreal fibroblast injection. Am J Ophthalmol 92:103–109

    PubMed  CAS  Google Scholar 

  14. Saati S, Agrawal RN, Louie S, Chader GJ, Humayun MS (2010) Effect of multiple injections of small divided doses vs single injection of intravitreal bevacizumab on retinal neovascular model in rabbits. Graefes Arch Clin Exp Ophthalmol 248:457–466

    Article  PubMed  CAS  Google Scholar 

  15. Wong CG, Rich KA, Liaw LH, Hsu HT, Berns MW (2001) Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr Eye Res 22:140–147

    Article  PubMed  CAS  Google Scholar 

  16. Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, Oshima K (1997) Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of blood–retinal barrier in rabbits and primates. Exp Eye Res 64:505–517

    Article  PubMed  CAS  Google Scholar 

  17. Deem CW, Futterman S, Kalina RE (1974) Induction of endothelial cell proliferation in rat retinal venules by chemical and indirect physical trauma. Invest Ophthalmol 13:580–585

    PubMed  CAS  Google Scholar 

  18. Hamilton AM, Marshall J, Kohner EM, Bowbyes JA (1975) Retinal new vessel formation following experimental vein occlusion. Exp Eye Res 20:493–497

    Article  PubMed  CAS  Google Scholar 

  19. Tamura M (2001) Neovascularization in experimental retinal venous obstruction in rabbits. Jpn J Ophthalmol 45:144–150

    Article  PubMed  CAS  Google Scholar 

  20. Pournaras CJ, Tsacopoulos M, Strommer K, Gilodi N, Leunenberger PM (1990) Experimental retinal branch vein occlusion in miniature pigs induces local tissue hypoxia and vasoproliferative microangiopathy. Ophthalmology 97:1321–1328

    PubMed  CAS  Google Scholar 

  21. Finkelstein D, Brem S, Patz A, Folkman J, Miller S, Ho-Chen C (1977) Experimental retinal neovascularization induced by intravitreal tumors. Am J Ophthalmol 83:660–664

    PubMed  CAS  Google Scholar 

  22. Penn JS, Tolman BL, Lowery LA (1993) Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34:576–585

    PubMed  CAS  Google Scholar 

  23. Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508

    Article  PubMed  Google Scholar 

  24. Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298:902–916

    Article  PubMed  CAS  Google Scholar 

  25. Ameri H, Chader GJ, Kim JG, Sadda SR, Rao NA, Humayun M (2007) The effects of intravitreous bevacizumab on retinal neovascular membrane and normal capillaries in rabbits. Invest Ophthalmol Vis Sci 48:5708–5715

    Article  PubMed  Google Scholar 

  26. Alikacem N, Yoshizawa T, Nelson KD, Wilson CA (2000) Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits. Invest Ophthalmol Vis Sci 41:1561–1569

    PubMed  CAS  Google Scholar 

  27. Sato T, Kusaka S, Shimojo H, Fujikado T (2009) Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 116:2165–2169

    Article  PubMed  Google Scholar 

  28. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909

    Article  PubMed  CAS  Google Scholar 

  29. Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, La Rochele W, Zack DJ, Campochiaro PA (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151:281–291

    PubMed  CAS  Google Scholar 

  30. Suto C, Kitano S, Hori S (1992) An experimental model of intravitreal neovascularization in rabbits [Japanese]. Nihon Ganka Gakkai Zasshi 96:959–966

    PubMed  CAS  Google Scholar 

  31. Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330

    Article  PubMed  CAS  Google Scholar 

  32. Hofman P, van Blijswijk BC, Gaillard PJ, Vrensen GF, Schlingermann RO (2001) Endothelial cell hypertrophy induced by vascular endothelial growth factor in the retina: new insights into the pathogenesis of capillary nonperfusion. Arch Ophthalmol 119:861–866

    Article  PubMed  CAS  Google Scholar 

  33. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, Ferrara N, Adamis AP (1996) Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103:1820–1828

    PubMed  CAS  Google Scholar 

  34. McIntosh RL, Rogers SL, Lim L, Cheung N, Wang JJ, Mitchell P, Kowalski JW, Nguyen HP, Wong TY (2010) Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology 117:1113–1123

    Article  PubMed  Google Scholar 

Download references

Declaration of interest

The authors report no financial conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís A. Arana.

Additional information

This manuscript is part of Dr. Arana’s master thesis from the postgraduate program in clinical surgery of Federal University of Parana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arana, L.A., Pinto, A.T., Chader, G.J. et al. Fluorescein angiography, optical coherence tomography, and histopathologic findings in a VEGF165 animal model of retinal angiogenesis. Graefes Arch Clin Exp Ophthalmol 250, 1421–1428 (2012). https://doi.org/10.1007/s00417-012-1978-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1978-8

Keywords

Navigation