Skip to main content

Advertisement

Log in

Synthesis, staining properties, and biocompatibility of a new cyanine dye for ILM peeling

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this work is to investigate the biocompatibility and staining properties of DSS: 3,3′-Di-(4-sulfobutyl)-1,1,1′,1′-tetramethyl-di-1H-benz[e]indocarbocyanine (DSS).

Methods

Dye concentrations of 0.5, 0.25, and 0.1% were evaluated (290 and 295 mOsm). Toxicity was assessed using a colorimetric test measuring the inhibition of ARPE 19 cell, human primary RPE cell, and human Müller cell proliferation. Exposure time was 30, 60, 120, and 300 s. Indocyanine green (ICG) (0.5, 0.25, and 0.1%) served as a control. Cells were also illuminated with plain white light (750 mW/cm2) for 10 min to assess phototoxic effects. Besides staining of porcine and human lens capsule, internal limiting membrane (ILM)-staining was assessed by applying 0.25 and 0.5% DSS over the macula in two human post-mortem eyes.

Results

DSS of 0.25 and 0.1% showed no toxic effect on primary RPE cells and MIO-M1cells, and 0.5, 0.25, and 0.1% for ARPE-19 cells. In MIO-M1cells, 0.5% dye showed a significant reduction of mitochondrial dehydrogenase activity only following an exposure time of 300 s. Following illumination, ICG showed a significantly more pronounced effect on cell viability in primary RPE cells and MIO-M1cells compared to DSS. The absorption maximum is found at 591 nm; the even more bathochromic fluorescence proceeds with a common Stokes’ shift where maxima at 620 and 660 nm with a quantum yield of 32% were found. The fluorescence is sufficiently hypsochromic and the fluorescence quantum yield high enough for an easy visual detection. The contrast and staining properties at the ILM were excellent and allowed for a controlled removal of the ILM during surgery. No penetration into deeper retinal layers was noted.

Conclusions

Our results indicate that this new cyanine dye DSS may represent an alternative for ILM staining due to its matched absorption concerning visibility and fluorescence qualities as well as its good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wollensak G, Spoerl E, Wirbelauer C, Pham DT (2004) Influence of indocyanine green staining on the biochemical strength of porcine internal limiting membrane. Ophthalmologica 218:278–282

    Article  PubMed  Google Scholar 

  2. Enaida H, Hisatomi T, Hata Y, Ueno A, Goto Y, Yamada T, Kubota T, Ishibashi T (2006) Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina 26:631–636

    Article  PubMed  Google Scholar 

  3. Schumann RG, Gandorfer A, Eibl KH, Henrich PB, Kampik A, Haritoglou C (2010) Sequential epiretinal membrane removal with internal limiting membrane peeling in brilliant blue G-assisted macular surgery. Br J Ophthalmol 94(10):1369–1372

    Article  PubMed  Google Scholar 

  4. Henrich PB, Priglinger SG, Haritoglou C, Josifova T, Ferreira PR, Strauss RW, Flammer J, Cattin PC (2011) Quantification of contrast recognizability during Brilliant Blue G (BBG) and Indocyanine Green (ICG) assisted chromovitrectomy. Invest Ophthalmol Vis Sci 52(7):4345–4349

    Article  PubMed  Google Scholar 

  5. Ueno A, Hisatomi T, Enaida H, Kagimoto T, Mochizuki Y, Goto Y, Kubota T, Hata Y, Ishibashi T (2007) Biocompatibility of brilliant blue G in a rat model of subretinal injection. Retina 27:499–504

    Article  PubMed  Google Scholar 

  6. Enaida H, Hisatomi T, Goto Y, Hata Y, Ueno A, Miura M, Kubota T, Ishibashi T (2006) Preclinical investigation of internal limiting membrane staining and peeling using intravitreal brilliant blue G. Retina 26:623–630

    Article  PubMed  Google Scholar 

  7. Lüke M, Januschowski K, Beutel J, Lüke C, Grisanti S, Peters S, Jaissle GB, Bartz-Schmidt KU, Szurman P (2008) Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 246(6):817–822

    Article  PubMed  Google Scholar 

  8. Remy M, Thaler S, Schumann RG, May CA, Fiedorowicz M, Schüttauf F, Grüterich M, Priglinger SG, Nentwich M, Kampik A, Haritoglou C (2008) An in-vivo evaluation of Brilliant Blue G in animals and humans. Br J Ophthalmol 92:1142–1147

    Article  PubMed  CAS  Google Scholar 

  9. Tsuiki E, Fujikawa A, Miyamura N, Yamada K, Mishima K, Kitaoka T (2007) Visual field defects after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol 143(4):704–705

    Article  PubMed  Google Scholar 

  10. Haritoglou C, Gandorfer A, Gass CA, Schaumberger M, Ulbig MW, Kampik A (2002) Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation. Am J Ophthalmol 134(6):836–841

    Article  PubMed  Google Scholar 

  11. Rodrigues EB, Meyer CH (2008) Meta-analysis of chromovitrectomy with indocyanine green in macular hole surgery. Ophthalmologica 222(2):123–129

    Article  PubMed  Google Scholar 

  12. Yam HF, Kwok AKH, Chan KP, Lai TYY, Chu KY, Lam DSC, Pang CP (2003) Effect of indocyanine green and illumination on gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 44:370–377

    Article  PubMed  Google Scholar 

  13. Langhals H, Haritoglou C (2009) Chemical and spectroscopic aspects of the application of dyes in vitreoretinal surgery. Ophthalmologe 106(1):16–20

    Article  PubMed  CAS  Google Scholar 

  14. Langhals H, Varja A, Laubichler P, Kernt M, Eibl K, Haritoglou C (2011) Cyanine dyes as optical contrast agents for ophthalmological surgery. J Med Chem 54(11):3903–3925

    Article  PubMed  CAS  Google Scholar 

  15. Haritoglou C, Priglinger SG, Eibl K, Liegl R, May CA, Thaler S, Kampik A, Schuettauf F (2009) Experimental evaluation of aniline and methyl blue for intraocular surgery. Retina 29:166–173

    Google Scholar 

  16. Haritoglou C, Yu A, Freyer W, Priglinger SG, May CA, Alge C, Eibl K, Welge-Luessen U, Kampik A (2005) An evaluation of novel dyes for intraocular surgery. Invest Ophthalmol Vis Sci 46:3315–3322

    Article  PubMed  Google Scholar 

  17. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  PubMed  CAS  Google Scholar 

  18. Eibl KH, Banas B, Schoenfeld CL, May CA, Neubauer AS, Priglinger S, Kampik A, Welge-Lussen U (2003) Alkylphosphocholines inhibit proliferation of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 44:3556–3561

    Article  PubMed  Google Scholar 

  19. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  20. Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S (2000) Staining of the internal limiting membrane in macular hole surgery. Arch Ophthalmol 118:1116–1118

    PubMed  CAS  Google Scholar 

  21. Lanzetta P, Polito A, Del Borrello M, Narayanan R, Shah VA, Frattolillo A, Bandello F (2006) Idiopathic macular hole surgery with low-concentration infracyanine green-assisted peeling of the internal limiting membrane. Am J Ophthalmol 142:771–776

    Article  PubMed  Google Scholar 

  22. Kumagai K, Furukawa M, Ogino N, Uemura A, Larson E (2006) Long-term outcomes of internal limiting membrane peeling with and without indocyanine green in macular hole surgery. Retina 26:613–617

    Article  PubMed  Google Scholar 

  23. Rufer F, Frimpong-Boateng A, Bunse A, Roider J (2007) Comparison of ILM peeling with and without the use of indocyanine green: functional results for idiopathic macular hole after pars plana vitrectomy. Ophthalmologe 104:54–59

    Article  PubMed  CAS  Google Scholar 

  24. Ferencz M, Somfai GM, Farkas A, Kovács I, Lesch B, Récsán Z, Nemes J, Salacz G (2006) Functional assessment of the possible toxicity of indocyanine green dye in macular hole surgery. Am J Ophthalmol 142:765–770

    Article  PubMed  Google Scholar 

  25. Tognetto D, Grandin R, Sanguinetti G, Minutola D, Di Nicola M, Di Mascio R, Ravalico G, Macular Hole Surgery Study Group (2006) Internal limiting membrane removal during macular hole surgery: results of a multicenter retrospective study. Ophthalmology 113:1401–1410

    Article  PubMed  Google Scholar 

  26. Engelbrecht NE, Freeman J, Sternberg P Jr, Aaberg TM Jr, Aaberg TM Jr, Martin DF, Sippy BD (2002) Retinal pigment epithelial changes after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol 133:89–94

    Article  PubMed  Google Scholar 

  27. Benson C, Richard C, Kues HA (1977) Absorption and fluorescence properties of cyanine dyes. J Chem Eng Data 22:379–383

    Article  CAS  Google Scholar 

  28. Haritoglou C, Freyer W, Priglinger SG, Kampik A (2006) Light absorbing properties of indocyanine green (ICG) in solution and after adsorption to the retinal surface: an ex-vivo approach. Graefes Arch Clin Exp Ophthalmol 244:1196–1202

    Article  PubMed  CAS  Google Scholar 

  29. Gandorfer A, Haritoglou C, Gandorfer A, Kampik A (2003) Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci 44:316–323

    Article  PubMed  Google Scholar 

  30. Haritoglou C, Gandorfer A, Schaumberger M, Gandorfer A, Kampik A (2003) Light absorbing properties and osmolarity of indocyanine green depending on concentration and solvent medium. Invest Ophthalmol Vis Sci 44:2722–2729

    Article  PubMed  Google Scholar 

  31. Haritoglou C, Priglinger SG, Gandorfer A, Welge-Luessen U, Kampik A (2005) Histology of the vitreoretinal interface after indocyanine green staining of the ILM with illumination using a halogen and xenon light source. Invest Ophthalmol Vis Sci 6:1468–1472

    Article  Google Scholar 

  32. Yip HK, Lai TY, So KF, Kwok AK (2006) Retinal ganglion cells toxicity caused by photosensitising effects of intravitreal indocyanine green with illumination in rat eyes. Br J Ophthalmol 90:99–102

    Article  PubMed  CAS  Google Scholar 

  33. Sato T, Ito M, Ishida M, Karasawa Y (2010) Phototoxicity of indocyanine green under continuous fluorescent lamp illumination and its prevention by blocking red light on cultured Müller cells. Invest Ophthalmol Vis Sci 51(8):4337–4345

    Article  PubMed  Google Scholar 

  34. Jackson TL, Griffin L, Vote B, Hillenkamp J, Marshall J (2005) An experimental method for testing novel retinal vital stains. Exp Eye Res 81(4):446–454

    Article  PubMed  CAS  Google Scholar 

  35. Rodrigues EB, Penha FM, de Paula Fiod Costa E, Maia M, Dib E, Moraes M Jr, Meyer CH, Magalhaes O Jr, Melo GB, Stefano V, Dias AB, Farah ME (2010) Ability of new vital dyes to stain intraocular membranes and tissues in ocular surgery. Am J Ophthalmol 149(2):265–277

    Article  PubMed  CAS  Google Scholar 

  36. Haritoglou C, Strauss R, Priglinger SG, Kreutzer T, Kampik A (2008) Delineation of the vitreous and posterior hyaloid using bromophenol blue. Retina 28:333–340

    Article  PubMed  Google Scholar 

  37. Januschowski K, Mueller S, Spitzer MS, Lueke M, Bartz-Schmidt KU, Szurman P (2011) The effects of the intraocular dye brilliant blue G (BBG) mixed with varying concentrations of glucose on retinal function in an isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 249(4):483–489

    Article  PubMed  CAS  Google Scholar 

  38. Rodrigues EB, Penha FM, Farah ME, de Paula Fiod Costa E, Maia M, Dib E, Bottós J, Freymuller E, Furlani B, Meyer CH, Magalhães O Jr, Lima-Filho AA, Safatle A (2009) Preclinical investigation of the retinal biocompatibility of six novel vital dyes for chromovitrectomy. Retina 29(4):497–510

    Article  PubMed  Google Scholar 

  39. Costa Ede P, Rodrigues EB, Farah ME, Dib E, Penha F, Magalhães O Jr, Furlani BA, Lima Filho AA, de Miranda A, Maia M (2009) Vital dyes and light sources for chromovitrectomy: comparative assessment of osmolarity, pH, and spectrophotometry. Invest Ophthalmol Vis Sci 50(1):385–391

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to PD Dr. W. Eichler, PhD, who provided us with the human Müller cell line MIO-M1 (gift from Dr. G.A. Limb, Institute of Ophthalmology and Moorfields Eye Hospital, London, UK).

Disclosure

Christos Haritoglou, Ana Varja, Peter Laubichler, and Heinz Langhals applied for a patent concerning the dye synthesis and its application.

The investigation was approved by the local IRB and all experiments were performed in adherence to the Declaration of Helsinki and all federal or state laws in Germany. Methods for securing human tissue were humane, included proper consent and approval, complied with the Declaration of Helsinki, and were approved by the local ethic committee.

Funding

This study received a grant by the “Freunde and Förderer der Augenklinik der Ludwig-Maximilians-University”

Competing Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Haritoglou.

Additional information

Christos Haritoglou and Marcus Kernt contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haritoglou, C., Kernt, M., Laubichler, P. et al. Synthesis, staining properties, and biocompatibility of a new cyanine dye for ILM peeling. Graefes Arch Clin Exp Ophthalmol 250, 829–838 (2012). https://doi.org/10.1007/s00417-012-1959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1959-y

Keywords

Navigation