Skip to main content

Advertisement

Log in

A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the outcomes of simultaneous correction of presbyopia and ametropia by a bi-aspheric cornea modulation technique, based on the creation of a central area hyperpositive for near vision and leaving the pericentral cornea for far vision in hyperopic, emmetropic, and myopic presbyopic patients.

Setting

Sixty eyes of 30 patients were treated with the PresbyMAX technique by one surgeon (D.U.) at the Eye Hospital Bellevue, Kiel, Germany.

Methods

Twenty eyes with hyperopic presbyopia, 20 eyes with emmetropic presbyopia, and 20 eyes with myopic presbyopia underwent Femto-Lasik, and were assessed up to 6 months postoperatively. All eyes underwent cornea treatment using the PresbyMAX® software, delivering a bi-aspheric multifocal ablation profile developed by SCHWIND eye-tech-solutions (Kleinostheim, Germany). All flaps were created by Ziemer LDV Femtolaser (Port, Switzerland).

Results

The mean binocular distance of uncorrected visual acuity (DUCVA) improved in the hyperopic group from 0.28 ± 0.29 logMAR to −0.04 ± 0.07 logMAR, in the emmetropic group from −0.05 ± 0.07 logMAR to 0.02 ± 0.11 logMAR, and in the myopic group from 0.78 ± 0.27 logMAR to 0.09 ± 0.08 logMAR. The mean binocular near uncorrected visual acuity (NUCVA) increased in the hyperopic group from 0.86 ± 0.62 logRAD to 0.24 ± 0.23 logRAD, and in the emmetropic group from 0.48 ± 0.14 logRAD to 0.18 ± 0.11 logRAD. The myopic presbyopes showed a decrease of the mean binocular NUCVA from 0.04 ± 0.19 logRAD to 0.12 ± 0.18 logRAD. The mean postoperative spherical equivalent for distance refraction was −0.13 ± 0.61 D for the hyperopic presbyopia, −0.43 ± 0.35 D for the emmetropic presbyopia, and −0.68 ± 0.42 D for the myopic presbyopia group, whereas the software took aim at −0.50 D in all groups.

Conclusions

In presbyopic patients without symptomatic cataracts, but refractive errors, PresbyMAX® will decrease the presbyopic symptoms and correct far distance refraction in the same treatment, offering spectacle-free vision in daily life in most of the treated patients. Further investigation is necessary to evaluate the overall benefit of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Montes-Mico R, Espana E, Bueno I, Charman WN, Menezo JL (2004) Visual performance with multifocal intraocular lenses: mesopic contrast sensitivity under distance and near conditions. Ophthalmology 111:85–96

    Article  PubMed  Google Scholar 

  2. Alio JL, Tavolato M, De la Hoz F, Claramonte P, Rodriguez-Prats JL, Galal A (2004) Near vision restoration with refractive lens exchange and pseudoaccommodating and multifocal refractive and diffractive intraocular lenses: comparative clinical study. J Cataract Refract Surg 30:2494–2503

    Article  PubMed  Google Scholar 

  3. Uthoff D, Gulati A, Hepper D, Holland D (2007) Potentially accommodating 1CU intraocular lens: 1-year results in 553 eyes and literature review. J Refract Surg 23:159–171

    PubMed  Google Scholar 

  4. Goldberg DB (2001) Laser in situ keratomileusis monovision. J Cataract Refract Surg 27:1449–1455

    Article  PubMed  CAS  Google Scholar 

  5. Miranda D, Krueger RR (2004) Monovision laser in situ keratomileusis for pre-presbyopic and presbyopic patients. J Refract Surg 20:325–328

    PubMed  Google Scholar 

  6. Gould G (1959) Laser. US patent: US19590804539 19590406

  7. Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940–1949

    Article  CAS  Google Scholar 

  8. Swinger CA (1981) Refractive surgery for the correction of myopia. Trans Ophthalmol Soc U K 101:434–439

    PubMed  Google Scholar 

  9. Munnerlyn CR, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14:46–52

    PubMed  CAS  Google Scholar 

  10. Seiler T, Genth U, Holschbach A, Derse M (1993) Aspheric photorefractive keratectomy with excimer laser. Refract Corneal Surg 9:166–172

    PubMed  CAS  Google Scholar 

  11. Trokel SL, Srinivasan R, Braren B (1983) Excimer laser surgery of the cornea. Am J Ophthalmol 96:710–715

    PubMed  CAS  Google Scholar 

  12. Krueger RR, Trokel SL (1985) Quantitation of corneal ablation by ultraviolet laser light. Arch Ophthalmol 103:1741–1742

    Article  PubMed  CAS  Google Scholar 

  13. Pettit GH, Ediger MN, Weiblinger RP (1991) Excimer laser corneal ablation: absence of a significant "incubation" effect. Lasers Surg Med 11:411–418

    Article  PubMed  CAS  Google Scholar 

  14. Cheng AC, Lam DS (2005) Monovision LASIK for pre-presbyopic and presbyopic patients. J Refract Surg 21:411–414

    PubMed  Google Scholar 

  15. Jain S, Ou R, Azar DT (2001) Monovision outcomes in presbyopic individuals after refractive surgery. Ophthalmology 108:1430–1433

    Article  PubMed  CAS  Google Scholar 

  16. Becker KA, Jaksche A, Holz FG (2006) PresbyLASIK: treatment approaches with the excimer laser. Ophthalmologe 103:667–672

    Article  PubMed  CAS  Google Scholar 

  17. Telandro A (2004) Pseudo-accommodative cornea: a new concept for correction of presbyopia. J Refract Surg 20:714–717

    Google Scholar 

  18. Alió JL, Chaubard JJ, Caliz A, Sala E, Patel S (2006) Correction of presbyopia by technovision central multifocal LASIK (presbyLASIK). J Refract Surg 22:453–460

    PubMed  Google Scholar 

  19. Pinelli R, Ortiz D, Simonetto A, Bacchi C, Sala E, Alió JL (2008) Correction of presbyopia in hyperopia with a center-distance, paracentral-near technique using the Technolas 217z platform. J Refract Surg 24:494–500

    PubMed  Google Scholar 

  20. Thibos LN, Hong X, Bradley A, Applegate RA (2004) Accuracy and precision of objective refraction from wavefront aberrations. J Vis 4(4):329–351

    Article  PubMed  Google Scholar 

  21. Coleman DJ (1986) Studies in monocular and binocular accomomodation with their clinical applications. Am J Ophthalmol 5:867–877

    Google Scholar 

  22. Glasser A (2006) Restoration of accommodation. Curr Opin Ophthalmol 17:12–18

    Article  PubMed  Google Scholar 

  23. Montes-Mico R, Alio JL (2003) Distance and near contrast sensitivitiy after multifocal intraocular lens implantation. J Cataract Refract Surg 10:703–711

    Article  Google Scholar 

  24. Moreira H, Garbus JJ, Fassano A (1992) Multifocal corneal topographic changes with excimer laser photorefractive keratectomy. Arch Opthalmol 110:994–999

    Article  CAS  Google Scholar 

  25. Jackson WB, Tuan KM, Mintsioulis G (2011) Aspheric wavefront-guided LASIK to treat hyperopic presbyopia: 12-month results with the VISX platform. J Refract Surg 27:519–529. doi:10.3928/1081597X-20101110-02

    Article  PubMed  Google Scholar 

  26. Tarrant J, Roorda A, Wildsoet CF (2010) Determining the accommodative response from wavefront aberrations. J Vis 10(5):4 doi:10.1167/10.5.4

    Article  PubMed  Google Scholar 

  27. Denoyer A, Denoyer L, Halfon J, Majzoub S, Pisella PJ (2009) Comparative study of aspheric intraocular lenses with negative spherical aberration or no aberration. J Cataract Refract Surg 35:496–503

    Article  PubMed  Google Scholar 

  28. Shentu X, Tang X, Yao K (2008) Spherical aberration, visual performance and pseudoaccommodation of eyes implanted with different aspheric intraocular lens. Clin Experiment Ophthalmol 36:620–624

    Article  PubMed  Google Scholar 

  29. Collins M (2001) The effect of monochromatic aberrations on Autoref R-1 readings. Ophthalmic Physiol Opt 21:217–227

    Article  PubMed  CAS  Google Scholar 

  30. Iida Y, Shimizu K, Ito M, Suzuki M (2008) Influence of age on ocular wavefront abberation changes with accommodation. J Refract Surg 24:696–701

    PubMed  Google Scholar 

  31. López-Gil N, Fernández-Sánchez V, Legras R, Montés-Micó R, Lara F, Nguyen-Khoa JL (2008) Accomodation-related changes in monochromatic aberrations of the human eye as a function of age. Invest Opthalmol Vis Sci 24:1736–1743

    Article  Google Scholar 

  32. Etchinson DA, Markwell EL (2008) Aberrations of emmetropic subjects at different ages. Vision Res 28:2224–2231

    Google Scholar 

  33. Illueca C, Alió JL, Mas D, Ortiz D, Pérez J, Espinosa J, Esperanza S (2008) Pseudoaccommodation and visual acuity with Technovision presbyLASIK and a theoretical simulated Array multifocal intraocular lens. J Refract Surg 24:344–349

    PubMed  Google Scholar 

  34. Jung SW, Kim MJ, Park SH, Joo CK (2008) Multifocal corneal ablation for hyperopic presbyopes. J Refract Surg 24:903–911

    PubMed  Google Scholar 

  35. Pande M, Hillmann JS (1993) Optical zone centration in keratorefractive surgery: entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology 100:1230–1237

    PubMed  CAS  Google Scholar 

  36. Boxer Wachler BS, Korn TS, Chandra NS, Michel FK (2003) Decentration of the optical zone: Centering on the pupil versus the coaxially sighted corneal light reflex in LASIK for hyperopia. J Refract Surg 19:464–465

    Google Scholar 

  37. de Ortueta D, Arba MS (2007) Centration during hyperopic LASIK using the coaxial light reflex. J Refract Surg 23:11

    PubMed  Google Scholar 

  38. Maloney RK (1990) Corneal topography and optical zone location in photorefractive keratectomy. Refract Corneal Surg 6:363–371

    PubMed  CAS  Google Scholar 

  39. Alio JL, Amparo F, Ortiz D, Moreno L (2009) Corneal multifocality with excimer laser for presbyopia correction. Curr Opin Opthalmol 20:264–271. doi:10.1097/ICU.0b013e32832a7ded

    Article  Google Scholar 

  40. Epstein RL, Gurgos MA (2009) Presbyopia treatment by monocular peripheral presbyLASIK. J Refract Surg 25:516–523

    PubMed  Google Scholar 

  41. Charman WN (2004) Ablation design in relation to spatial frequency, depth-of-focus, and age. J Refract Surg 20:S542–S549

    PubMed  Google Scholar 

  42. Dai GM (2006) Optical surface optimization for the correction of presbyopia. Appl Opt 10(45):4184–4195

    Article  Google Scholar 

  43. Patel S, Alió JL, Feinbaum C (2008) Comparison of Acri. Smart multifocal IOL, crystalens AT-45 accommodative IOL, and Technovision presbyLASIK for correcting presbyopia. J Refract Surg 24:294–299

    PubMed  Google Scholar 

  44. Ortiz D, Alió JL, Illueca C, Mas D, Sala E, Pérez J, Espinosa J (2007) Optical analysis of presbyLASIK treatment by a light propagation algorithm. J Refract Surg 23:39–44

    PubMed  Google Scholar 

  45. Cantú R, Rosales MA, Tepichín E, Curioca A, Montes V, Bonilla J (2004) Advanced surface ablation for presbyopia using the Nidek EC-5000 laser. J Refract Surg 20(5 Suppl):S711–S713

    PubMed  Google Scholar 

  46. Artola A, Patel S, Schimchak P, Ayala MJ, Ruiz-Moreno JM, Alió JL (2006) Evidence for delayed presbyopia after photorefractive keratectomy for myopia. Ophthalmology 113:735.e1–741.e1

    Article  Google Scholar 

  47. de Ortueta D (2008) Is peripheral presbyLASIK a center-distance technique? J Refract Surg 24:561

    PubMed  Google Scholar 

  48. Wright KW, Guemes A, Kapadia MS, Wilson SE (1999) Binocular function and patient satisfaction after monovision induced by myopic photorefractive keratectomy. J Cataract Refract Surg 25:177–182

    Article  PubMed  CAS  Google Scholar 

  49. Johannsdottir KR, Stelmach LB (2001) Monovision: a review of the scientific literature. Optom Vis Sci 78:646–651

    Article  PubMed  CAS  Google Scholar 

  50. Braun EH, Lee J, Steinert RF (2008) Monovision in LASIK. Ophthalmology 115:1196–1202, Epub 2007 Dec 3

    Article  PubMed  Google Scholar 

  51. Reinstein DZ, Couch DG, Archer TJ (2009) LASIK for hyperopic astigmatism and presbyopia using micro-monovision with the Carl Zeiss Meditec MEL80 platform. J Refract Surg 25:37–58

    PubMed  Google Scholar 

  52. Reinstein DZ, Archer TJ, Gobbe M (2011) LASIK for myopic astigmatism and presbyopia using non-linear aspheric micro-monovision with the Carl Zeiss Meditec MEL 80 platform. J Refract Surg 27:23–37. doi:10.3928/1081597X-20100212-04

    Article  PubMed  Google Scholar 

  53. Vinciguerra P, Nizzola GM, Bailo G, Nizzola F, Ascari A, Epstein D (1998) Excimer laser photorefractive keratectomy for presbyopia: 24-month follow-up in three eyes. J Refract Surg 14:31–37

    PubMed  CAS  Google Scholar 

  54. Trindade F, Pascucci SE (2006) Keratorefractive approaches to achieving pseudoaccommodation. Ophthalmol Clin North Am 19:35–44, vi. Review

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Uthoff.

Additional information

The authors have no financial interests in the presented products, and no financial relationship with the Schwind Company. The authors have full control of all primary data, and agree to allow Graefe’s Archive to review the data on request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uthoff, D., Pölzl, M., Hepper, D. et al. A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia. Graefes Arch Clin Exp Ophthalmol 250, 1649–1661 (2012). https://doi.org/10.1007/s00417-012-1948-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1948-1

Keywords

Navigation