Skip to main content

Advertisement

Log in

Can we measure mesopic pupil size with the cobalt blue light slit-lamp biomicroscopy method?

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this work is to assess a previously described slit-lamp biomicroscopy-based method (SLBM) for measuring pupil diameter and compare it to Colvard infrared pupillometry (CIP).

Methods

Two examiners performed three repeated measurements with each instrument in 40 healthy eyes. We determined the agreement of SLBM and CIP, intraobserver and interobserver repeatabilities, and interobserver concordance (kappa) and SLBM ability for detecting pupil sizes over 6.0 mm.

Results

The mean (±standard deviation [SD]) pupil diameter was 5.81 ± 0.70 mm with SLBM and 6.26 ± 0.68 mm with CIP (p = 0.01) averaging both examiner’s results. Mean differences between the SLBM and CIP were –0.60 mm and –0.30 mm for each examiner using the average of the three readings (p = 0.02), and they were very similar using the first reading. Intraobserver reproducibility: the width of the 95% LoA ranged from 1.79 to 2.30 mm. The ICCs were 0.97 and 0.92 for SLBM, and 0.96 and 0.90 for CIP. Interobserver reproducibility: the width of the LoA ranged from 1.82 to 2.09 mm. Kappa statistics were 0.39 and 0.49 for the first and mean SLBM readings, respectively, and 0.45 for both the first and mean CIP readings. Sensitivity and specificity of SLBM for detection of pupils larger than 6 mm ranged from 55.56% to 73.68% and from 76.19% to 95.45%, respectively. The best trade-off between sensitivity and specificity ranged from 5.4 mm to 6.2 mm.

Conclusions

Although the SLBM is quite repeatable, it underestimates mesopic pupil size and shows a too wide range of agreement with CIP. SLBM shows low sensitivity in detecting pupils larger than 6 mm, which may be misleading when planning anterior segment surgery. Previous grading-consensus training strategies may increase interrater reproducibility, and compensation for the systematic underestimation could improve accuracy of the SLBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nixon WS (1997) Pupil size in refractive surgery. J Cataract Refract Surg 23:1435–1436

    PubMed  CAS  Google Scholar 

  2. Colvard M (1999) Preoperative measurement of scotopic pupil dilation using an office pupillometer. J Cataract Refract Surg 24:1594–1597

    Google Scholar 

  3. Fan-Paul NI, Li J, Miller JS, Florakis GJ (2002) Night vision disturbances after corneal refractive surgery. Surv Ophthalmol 47:533–546

    Article  PubMed  Google Scholar 

  4. Helgesen A, Hjortdal J, Ehlers N (2004) Pupil size and night vision disturbances after LASIK for myopia. Acta Ophthalmol Scand 82:454–460

    Article  PubMed  Google Scholar 

  5. Alió JL, de la Hoz F, Pérez-Santonja JJ, Ruiz-Moreno JM, Quesada JA (1999) Phakic anterior chamber lenses for the correction of myopia. A 7-year cumulative analysis of complications in 263 cases. Ophthalmology 106:458–466

    Article  PubMed  Google Scholar 

  6. Pieh S, Lackner B, Hanselmayer G, Zöhrer R, Sticker M, Weghaupt H, Fercher A, Skorpik C (2001) Halo size under distance and near conditions in refractive multifocal intraocular lenses. Br J Ophthalmol 85:816–821

    Article  PubMed  CAS  Google Scholar 

  7. Alfonso JF, Fernández-Vega L, Baamonde MB, Montés-Micó R (2007) Correlation of pupil size with visual acuity and contrast sensitivity after implantation of an apodized diffractive intraocular lens. J Cataract Refract Surg 33:430–438

    Article  PubMed  Google Scholar 

  8. Pop M, Payette Y, Santoriello E (2002) Comparison of the pupil card and pupillometer in measuring pupil size. J Cataract Refract Surg 28:283–288

    Article  PubMed  Google Scholar 

  9. Wachler BS, Krueger RR (1999) Agreement and repeatability of infrared pupillometry and the comparison method. Ophthalmology 106:319–323

    Article  PubMed  CAS  Google Scholar 

  10. Schnitzler EM, Baumeister M, Kohnen T (2000) Scotopic measurement of normal pupils: Colvard versus Video Vision Analyzer infrared pupillometer. J Cataract Refract Surg 26:859–866

    Article  PubMed  CAS  Google Scholar 

  11. Rosen ES, Gore CL, Taylor D, Chitkara D, Howes F, Kowalewski E (2002) Use of a digital infrared pupillometer to assess patient suitability for refractive surgery. J Cataract Refract Surg 28:1433–1438

    Article  PubMed  Google Scholar 

  12. Kohnen T, Terzi E, Buhren J, Kohnen EM (2003) Comparison of a digital and a handheld infrared pupillometer for determining scotopic pupil diameter. J Cataract Refract Surg 29:112–117

    Article  PubMed  Google Scholar 

  13. Michel AW, Kronberg BP, Narváez J, Zimmerman G (2006) Comparison of 2 multiple-measurement infrared pupillometers to determine scotopic pupil diameter. J Cataract Refract Surg 32:1926–1931

    Article  PubMed  Google Scholar 

  14. Twa MD, Bailey MD, Hayes J, Bullimore M (2004) Estimation of pupil size by digital photography. J Cataract Refract Surg 30:381–389

    Article  PubMed  Google Scholar 

  15. Yang H, Lee M, Kim JB, Ahn J (2006) Burst-shot infrared digital photography to determine scotopic pupil diameter. J Cataract Refract Surg 32:2113–2117

    Article  PubMed  Google Scholar 

  16. Ho LY, Harvey TM, Scherer J, Balasubramaniam M, Dhaliwal DK, Mah FS (2009) Comparison of Rosenbaum Pupillometry Card Using Red and Blue Light to Colvard and Iowa Pupillometers. J Refract Surg 2:1–7

    Google Scholar 

  17. Schallenberg M, Bangre V, Steuhl KP, Kremmer S, Selbach JM (2010) Comparison of the Colvard, Procyon, and Neuroptics pupillometers for measuring pupil diameter under low ambient illumination. J Refract Surg 26:134–143

    Article  PubMed  Google Scholar 

  18. Bradley JC, Bentley KC, Mughal AI, Brown SM (2010) Clinical performance of a handheld digital infrared monocular pupillometer for measurement of the dark-adapted pupil diameter. J Cataract Refract Surg 36:277–281

    Article  PubMed  Google Scholar 

  19. Starck T, Liu Y, Prewett AL, Curup LG (2002) Comparison of scotopic pupil measurement with slit-lamp-based cobalt blue light and infrared video-based system. J Cataract Refract Surg 28:1952–1956

    Article  PubMed  Google Scholar 

  20. Chaglasian EL, Akbar S, Probst LE (2006) Pupil measurement using the Colvard pupillometer and a standard pupil card with a cobalt blue filter penlight. J Cataract Refract Surg 32:255–260

    Article  PubMed  Google Scholar 

  21. Hsieh YT, Hu FR (2007) The correlation of pupil size measured by Colvard pupillometer and Orbscan II. J Refract Surg 23:789–795

    PubMed  Google Scholar 

  22. Bootsma S, Tahzib N, Eggink F, de Brabander J, Nuijts R (2007) Comparison of two pupillometers in determining pupil size for refractive surgery. Acta Ophthalmol Scand 85:324–328

    Article  PubMed  Google Scholar 

  23. Rocha KM, Soriano ES, Chamon W, Chalita MR, Nosé W (2007) Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study. Ophthalmology 114:2050–2054

    Article  PubMed  Google Scholar 

  24. McDonnell C, Rolincova M, Venter J (2006) Comparison of measurement of pupil sizes among the Colvard pupillometer, Procyon pupillometer, and NIDEK OPD-scan. J Refract Surg 22:1027–1030

    Google Scholar 

  25. Yoon MK, Schmidt G, Lietman T, McLeod SD (2007) Inter- and intraobserver reliability of pupil diameter measurement during 24 hours using the Colvard pupillometer. J Refract Surg 23:266–271

    PubMed  Google Scholar 

  26. Colvard M (1998) Preoperative measurement of scotopic pupil dilation using an office pupillometer. J Cataract Refract Surg 24:1594–1597

    PubMed  CAS  Google Scholar 

  27. Ray WA, O'Day DM (1985) Statistical analysis of multi-eye data in ophthalmic research. Invest Ophthalmol Vis Sci 26:1186–1188

    PubMed  CAS  Google Scholar 

  28. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  29. Bland JM, Altman DG (1996) Measurement error and correlation coefficients. BMJ 313:41–42

    Article  PubMed  CAS  Google Scholar 

  30. Margo CE, Harman LE, Mulla ZD (2002) The reliability of clinical methods in ophthalmology. Surv Ophthalmol 47:375–386

    Article  PubMed  Google Scholar 

  31. Fleiss J (1981) Statistical methods for rates and proportions. John Wiley & Sons Inc. New York, NY. pp 212-236.

  32. Jin Y, Zabriskie N, Olson RJ (2009) Dysphotopsia outcomes analysis of two truncated acrylic 6.0-mm intraocular optic lenses. Ophthalmologica 223:47–51

    Article  PubMed  Google Scholar 

  33. Kohnen T, Terzi E, Kasper T, Kohnen EM, Bühren J (2004) Correlation of infrared pupillometers and CCD-camera imaging from aberrometry and videokeratography for determining scotopic pupil size. J Cataract Refract Surg 30:2116–2123

    Article  PubMed  Google Scholar 

  34. Cheng AC, Lam DS (2004) Comparison of the Colvard pupillometer and the Zywave for measuring scotopic pupil diameter. J Refract Surg 20:248–252

    PubMed  Google Scholar 

  35. Griner PF, Mayewski RJ, Mushlin AI, Greenland P (1981) Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann Intern Med 94:557–592

    PubMed  CAS  Google Scholar 

  36. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298

    Article  PubMed  CAS  Google Scholar 

  37. Bouma H (1962) Size of the static pupil as a function of wavelength and luminosity of the light incident on the human eye. Nature 193:690–691

    Article  PubMed  CAS  Google Scholar 

  38. Adrian W (2003) Spectral sensitivity of the pupillary system. Clin Exp Optom 86:235–238

    Article  PubMed  Google Scholar 

  39. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A (2009) Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 116:1564–1573

    Article  PubMed  Google Scholar 

  40. Howarth PA, Heron G, Whittaker L (2000) The measurement of pupil cycling time. Graefe’s Arch Clin Exp Ophthalmol 238:826–832

    Article  CAS  Google Scholar 

  41. Robl C, Sliesoraityte I, Hillenkamp J, Prahs P, Lohmann CP, Helbig H, Herrmann WA (2009) Repeated pupil size measurements in refractive surgery candidates. J Cataract Refract Surg 35:2099–2102

    Article  PubMed  Google Scholar 

  42. Schallhorn SC, Kaupp SE, Tanzer DJ, Tidwell J, Laurent J, Bourque LB (2003) Pupil size and quality of vision after LASIK. Ophthalmology 110:1606–1614

    Article  PubMed  Google Scholar 

  43. Roberts CW, Koester CJ (1993) Optical zone diameters for photorefractive corneal surgery. Invest Ophthalmol Vis Sci 34:2275–2281

    PubMed  CAS  Google Scholar 

  44. Kohnen T, Bühren J, Kühne C, Mirshahi A (2004) Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up: clinical outcome and change in higher order aberrations. Ophthalmology 111:2175–2185

    Article  PubMed  Google Scholar 

  45. Oshika T, Klyce SD, Applegate RA, Howland HC, El Danasoury MA (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127:1–7

    Article  PubMed  CAS  Google Scholar 

  46. Martínez CE, Applegate RA, Klyce SD, McDonald MB, Medina JP, Howland HC (1998) Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 116:1053–1062

    PubMed  Google Scholar 

  47. Maguire LJ (1994) Keratorefractive surgery, success, and the public health. Am J Ophthalmol 117:394–398

    PubMed  CAS  Google Scholar 

  48. Bradley JC, Anderson JE, Xu KT, Brown SM (2005) Comparison of Colvard pupillometer and infrared digital photography for measurement of the dark-adapted pupil diameter. J Cataract Refract Surg 31:2129–2132

    Article  PubMed  Google Scholar 

  49. Spadea L, Giammaria D, Ferrante R, Balestrazzi E (2005) Pre-excimer laser and post-excimer laser refractive surgery measurements of scotopic pupil diameter using 2 pupillometers. Ophthalmology 112:1003–1008

    Article  PubMed  Google Scholar 

  50. Chan A, Manche EE (2011) Effect of preoperative pupil size on quality of vision after wavefront-guided LASIK. Ophthalmology 118:736–741

    Article  PubMed  Google Scholar 

  51. Bühren J, Kühne C, Kohnen T (2005) Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK. J Cataract Refract Surg 31:2272–2280

    Article  PubMed  Google Scholar 

  52. Holladay JT, Janes JA (2002) Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis. J Cataract Refract Surg 28:942–947

    Article  PubMed  Google Scholar 

  53. Tahzib NG, Bootsma SJ, Eggink FA, Nuijts RM (2006) Functional outcome and patient satisfaction after Artisan phakic intraocular lens implantation for the correction of myopia. Am J Ophthalmol 142:31–39

    Article  PubMed  Google Scholar 

  54. Pop M, Payette Y (2004) Risk factors for night vision complaints after LASIK for myopia. Ophthalmology 111:3–10

    Article  PubMed  Google Scholar 

  55. Alió JL, Elkady B, Ortiz D, Bernabeu G (2008) Clinical outcomes and intraocular optical quality of a diffractive multifocal intraocular lens with asymmetrical light distribution. J Cataract Refract Surg 34:942–948

    Article  PubMed  Google Scholar 

  56. de Vries NE, Webers CA, Touwslager WR, Bauer NJ, de Brabander J, Berendschot TT, Nuijts RM (2011) Dissatisfaction after implantation of multifocal intraocular lenses. J Cataract Refract Surg 37:859–865

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by RETICS RD07/0062 (Oftalmología), and the Spanish Ministry of Education and Science through the research project FIS2005-05020-C03-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel J. Maldonado.

Additional information

The authors have no financial interests in any aspect of this study.

The authors have full control of all primary data and they agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado, M.J., López-Miguel, A., Piñero, D.P. et al. Can we measure mesopic pupil size with the cobalt blue light slit-lamp biomicroscopy method?. Graefes Arch Clin Exp Ophthalmol 250, 1637–1647 (2012). https://doi.org/10.1007/s00417-011-1909-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1909-0

Keywords

Navigation