Skip to main content

Advertisement

Log in

Effects of intravitreal triamcinolone acetonide on retinal gene expression in a rat model of central retinal vein occlusion

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the effects of intravitreal triamcinolone acetonide on the alterations in retinal gene expression in a rat model of central retinal vein occlusion (CRVO).

Methods

In one eye of adult Brown Norway rats (n = 77) CRVO was induced with laser photocoagulation of all retinal veins near to the optic disk after intraperitoneal injection of 0.2 ml of 10% sodium fluorescein. The gene expression was investigated using RT-PCR separately in the neural retina and retinal pigment epithelium (RPE) 1, 3, 7, and 14 days after CRVO induction. We analyzed the expression of factors that influence the development of vascular edema (VEGF-A, VEGF-B, PEDF), of channels implicated in retinal osmohomeostasis (Kir4.1, AQP4, AQP1), and of the pro-inflammatory factors IL-1ß and IL-6.

Results

CRVO induced a rapid transient upregulation of Vegfa, a downregulation of Vegfb, and a delayed upregulation of Pedf in the neuroretina. In the neuroretina and retinal pigment epithelium, CRVO induced strong, transient downregulation of Kir4.1, Aqp4, and Aqp1, and striking rapid upregulation of Il1ß and Il6. Intravitreal triamcinolone reversed the downregulation of Kir4.1 and accelerated the normalization of the upregulated expression of Il1ß and Il6. The CRVO-induced transient upregulation of Vegfa was not influenced by the triamcinolone application.

Conclusions

Triamcinolone exerts anti-inflammatory effects in the ischemic retina by inhibitory effects on the gene expression of IL-1ß and IL-6, and may have neuroprotective effects via improvement of retinal potassium homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ip MS, Scott IU, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, Singerman LJ, Tolentino M, Chan CK, Gonzalez VH, SCORE Study Research Group (2009) A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch Ophthalmol 127:1101–1114

    Article  PubMed  Google Scholar 

  2. Karacorlu M, Karacorlu SA, Ozdemir H, Senturk F (2007) Intravitreal triamcinolone acetonide for treatment of serous macular detachment in central retinal vein occlusion. Retina 27:1026–1030

    Article  PubMed  Google Scholar 

  3. Kondo M, Kondo N, Ito Y, Kachi S, Kikuchi M, Yasuma TR, Ota I, Miyake K, Terasaki H (2009) Intravitreal injection of bevacizumab for macular edema secondary to branch retinal vein occlusion: results after 12 months and multiple regression analysis. Retina 29:1242–8

    Article  PubMed  Google Scholar 

  4. Rouvas A, Petrou P, Vergados I, Pechtasides D, Liarakos V, Mitsopoulou M, Ladas I (2009) Intravitreal ranibizumab (Lucentis) for treatment of central retinal vein occlusion: a prospective study. Graefes Arch Clin Exp Ophthalmol 247:1609–1616

    Article  PubMed  CAS  Google Scholar 

  5. Bringmann A, Uckermann O, Pannicke T, Iandiev I, Reichenbach A, Wiedemann P (2005) Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol Scand 83:528–538

    Article  PubMed  Google Scholar 

  6. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective ß-isoform-selective inhibitor. Diabetes 46:1473–1480

    Article  PubMed  CAS  Google Scholar 

  7. Campochiaro PA (2007) Seeing the light: new insights into the molecular pathogenesis of retinal diseases. J Cell Physiol 213:348–354

    Article  PubMed  CAS  Google Scholar 

  8. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P, Lee C, Arjunan P, Dong L, Kumar A, Rissanen TT, Wang B, Nagai N, Fons P, Fariss R, Zhang Y, Wawrousek E, Tansey G, Raber J, Fong GH, Ding H, Greenberg DA, Becker KG, Herbert JM, Nash A, Yla-Herttuala S, Cao Y, Watts RJ, Li X (2009) VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA 106:6152–6157

    Article  PubMed  CAS  Google Scholar 

  9. Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12

    Article  PubMed  Google Scholar 

  10. Nicholson BP, Schachat AP (2010) A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 248:915–30

    Article  PubMed  CAS  Google Scholar 

  11. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K + siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47–54

    Article  PubMed  CAS  Google Scholar 

  12. Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36:241–249

    Article  PubMed  Google Scholar 

  13. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44:2803–2808

    Article  PubMed  Google Scholar 

  14. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452

    PubMed  CAS  Google Scholar 

  15. Park SP, Ahn JK (2008) Changes of aqueous vascular endothelial growth factor and interleukin-6 after intravitreal triamcinolone for branch retinal vein occlusion. Clin Experiment Ophthalmol 36:831–835

    Article  PubMed  Google Scholar 

  16. Noma H, Funatsu H, Mimura T, Harino S, Hori S (2009) Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Ophthalmology 116:87–93

    Article  PubMed  Google Scholar 

  17. Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campochiaro PA, Vinores SA (1997) Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor-α, and interleukin-1ß-mediated breakdown. J Neurosci Res 49:268–280

    Article  PubMed  CAS  Google Scholar 

  18. Derevjanik NL, Vinores SA, Xiao WH, Mori K, Turon T, Hudish T, Dong S, Campochiaro PA (2002) Quantitative assessment of the integrity of the blood–retinal barrier in mice. Invest Ophthalmol Vis Sci 43:2462–2467

    PubMed  Google Scholar 

  19. Vinores SA, Xiao WH, Zimmerman R, Whitcup SM, Wawrousek EF (2003) Upregulation of vascular endothelial growth factor (VEGF) in the retinas of transgenic mice overexpressing interleukin-1ß (IL-1ß) in the lens and mice undergoing retinal degeneration. Histol Histopathol 18:797–810

    PubMed  CAS  Google Scholar 

  20. Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, Miyawaki N (2001) Interleukin-1ß mediates ischemic injury in the rat retina. Exp Eye Res 73:661–667

    Article  PubMed  CAS  Google Scholar 

  21. Rehak M, Hollborn M, Iandiev I, Pannicke T, Karl A, Wurm A, Kohen L, Reichenbach A, Wiedemann P, Bringmann A (2009) Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat. Invest Ophthalmol Vis Sci 50:2359–2367

    Article  PubMed  Google Scholar 

  22. Saito Y, Park L, Skolik SA, Alfaro DV, Chaudhry NA, Barnstable CJ, Liggett PE (1997) Experimental preretinal neovascularization by laser-induced venous thrombosis in rats. Curr Eye Res 16:26–33

    Article  PubMed  CAS  Google Scholar 

  23. Ameri H, Ratanapakorn T, Rao NA, Chader GJ, Humayun MS (2008) Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis. Graefes Arch Clin Exp Ophthalmol 246:1429–39

    Article  PubMed  Google Scholar 

  24. Cui JZ, Wang XF, Hsu L, Matsubara JA (2009) Inflammation induced by photocoagulation laser is minimized by copper chelators. Lasers Med Sci 24:653–7

    Article  PubMed  Google Scholar 

  25. Iandiev I, Pannicke T, Reichel MB, Wiedemann P, Reichenbach A, Bringmann A (2005) Expression of aquaporin-1 immunoreactivity by photoreceptor cells in the mouse retina. Neurosci Lett 388:96–99

    Article  PubMed  CAS  Google Scholar 

  26. Pederson JE (1994) Fluid physiology of the subretinal space. In: Wilkinson CP (ed) Retina. Mosby-Year Book, St Louis, pp 1955–1968

    Google Scholar 

  27. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  PubMed  CAS  Google Scholar 

  28. Tenckhoff S, Hollborn M, Kohen L, Wolf S, Wiedemann P, Bringmann A (2005) Diversity of aquaporin mRNA expressed by rat and human retinas. Neuroreport 16:53–56

    Article  PubMed  CAS  Google Scholar 

  29. Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA (2007) Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 212:429–439

    Article  PubMed  CAS  Google Scholar 

  30. Haller JA, Bandello F, Belfort R Jr (2010) Blumenkranz MS, Gillies M, Heier J, Loewenstein A, Yoon YH, Jacques ML, Jiao J, Li XY, Whitcup SM; OZURDEX GENEVA Study Group. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117:1134–1146

    Article  PubMed  Google Scholar 

  31. Ip M, Kahana A, Altaweel M (2003) Treatment of central retinal vein occlusion with triamcinolone acetonide: an optical coherence tomography study. Semin Ophthalmol 18:67–73

    Article  PubMed  Google Scholar 

  32. Scott IU, Ip MS, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, Chan CK, Gonzalez VH, Singerman LJ, Tolentino M, SCORE Study Research Group (2009) A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch Ophthalmol 127:1115–1128

    Article  PubMed  Google Scholar 

  33. Uckermann O, Kutzera F, Wolf A, Pannicke T, Reichenbach A, Wiedemann P, Wolf S, Bringmann A (2005) The glucocorticoid triamcinolone acetonide inhibits osmotic swelling of retinal glial cells via stimulation of endogenous adenosine signaling. J Pharmacol Exp Ther 315:1036–1045

    Article  PubMed  CAS  Google Scholar 

  34. Liu XQ, Kobayashi H, Jin ZB, Wada A, Nao-I N (2007) Differential expression of Kir4.1 and aquaporin 4 in the retina from endotoxin-induced uveitis rat. Mol Vis 13:309–317

    PubMed  CAS  Google Scholar 

  35. Wang L, Song H (2009) Effects of repeated injection of intravitreal triamcinolone on macular oedema in central retinal vein occlusion. Acta Ophthalmol 87:285–289

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matus Rehak.

Additional information

M. Rehak and F. Drechsler contributed equally to this work.

This study was supported by a grant from the Deutsche Forschungsgemeinschaft (KO 1547/6-1).

The authors have full control of all primary data and they agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehak, M., Drechsler, F., Köferl, P. et al. Effects of intravitreal triamcinolone acetonide on retinal gene expression in a rat model of central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 249, 1175–1183 (2011). https://doi.org/10.1007/s00417-011-1683-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1683-z

Keywords

Navigation