Skip to main content

Advertisement

Log in

Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Retinal degeneration is followed by significant changes in the structure and function of photoreceptors in humans and several genetic animal models. However, it is not clear whether similar changes occur when the degeneration is induced pharmacologically. Therefore, our aim was to investigate the influence of retinotoxic N-methyl-N-nitrosourea (MNU) on the function, morphology and underlying molecular pathways of programmed cell death.

Methods

C57/BL6 mice were injected with different doses of MNU, and function was determined by analysing optokinetic reflex measurements and cued water maze results at several time points post-injection. Morphometric measurements were also taken from H&E-stained paraffin eye sections. TUNEL-positive cells and caspase-3 and -6 were detected by immunohistochemistry. To assess the molecular changes leading to cell death, qRT-PCR from neurosensory retina mRNA was performed.

Results

The application of MNU led to an instant decrease in function and a delayed decrease in the thickness of the retinal outer nuclear layer. These responses were observed in the absence of any structural changes in the retinal pigment epithelium. The degeneration of the photoreceptor cell layer was highest with 60 mg/kg MNU. The assessment of TUNEL-positive cells visualised cell death after treatment, but no detectable caspase-3 activity was observed concomitant with these changes. qRT-PCR revealed the possible involvement of the inflammatory mediator caspase-1 and endoplasmic reticulum stress-mediated apoptosis by caspase-12.

Conclusion

MNU leads to the dose-dependent degeneration of photoreceptor cells in mice by caspase-3-independent pathways and is, therefore, a suitable model to study retinal degeneration in an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  2. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525

    Article  PubMed  CAS  Google Scholar 

  3. Machida K, Urano K, TsutsumiH YM, Nomura T, Usui T (2008) Carcinogenic comparative study on rasH2 mice produced by two breeding facilities. J Toxicol Sci 33:493–501

    Article  PubMed  Google Scholar 

  4. Morton D, Bailey KL, Stout CL, Weaver RJ, White KA, Lorenzen MJ, Ball DJ (2008) N-Methyl-N-Nitrosourea (MNU): a positive control chemical for p53+/– mouse carcinogenicity studies. Toxicol Pathol 36:926–931

    Article  PubMed  CAS  Google Scholar 

  5. Terracini B, Testa MC (1970) Carcinogenicity of a single administration of N-nitrosomethylurea: a comparison between newborn and 5-week-old mice and rats. Br J Cancer 24:588–598

    Article  PubMed  CAS  Google Scholar 

  6. Yuge K, Nambu H, Senzaki H, Nakao I, Miki H, Uyama M, Tsubura A (1996) N-Methyl-N-nitrosourea-induced photoreceptor apoptosis in the mouse retina. In Vivo 10:483–488

    PubMed  CAS  Google Scholar 

  7. Nambu H, Yuge K, Nakajima H, Shikata N, Takahashi K, Miki H, Uyama M, Tsubura A (1997) Morphologic characteristics of N-Methyl-N-Nitrosourea-induced retinal degeneration in C57BL6 mice. Pathol Int 47:377–383

    Article  PubMed  CAS  Google Scholar 

  8. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  9. Enzmann V, Row BW, Yamauchi Y, Kheirandish L, Gozal D, Kaplan HJ, McCall MA (2006) Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Exp Eye Res 82:441–448

    Article  PubMed  CAS  Google Scholar 

  10. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investig Ophthalmol Vis Sci 45:4611–4616

    Article  Google Scholar 

  11. Sarra GM, Sarra FG, Schlichtenbrede FC, Trittibach P, Estermann S, Tsiroukis E, Ali RR, Luthert PJ, Reichel MB (2005) Effect of steroidal and non-steroidal drugs on the microglia activation pattern and the course of degeneration in the retinal degeneration slow mouse. Ophthalmic Res 37:72–82

    Article  PubMed  CAS  Google Scholar 

  12. Yoshizawa K, Nambu H, Yang J, Oishi Y, Senzaki H, Shikata N, Miki H, Tsubura A (1999) Mechanisms of photoreceptor apoptosis induced by N-Methyl-N-nitrosourea in Sprague–Dawley rats. Lab Invest 79:1359–1367

    PubMed  CAS  Google Scholar 

  13. Carson DA, Seto S, Wasson DB, Carrera CJ (1986) DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 164:273–281

    Article  PubMed  CAS  Google Scholar 

  14. Miki K, Uehara N, Shikata N, Matsumura M, Tsubura A (2007) Poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide rescues N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague–Dawley rats through preservation of nuclear factor-kB activity. Exp Eye Res 84:285–292

    Article  PubMed  CAS  Google Scholar 

  15. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 11:47–61

    Article  CAS  Google Scholar 

  16. Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295

    Article  PubMed  CAS  Google Scholar 

  17. Chee JLY, Guan XL, Lee JY, Dong B, Leong SM, Ong EH, Liou AKF, Lim TM (2005) Compensatory caspase activation in MPP + -induced cell death in dopaminergic neurons. Cell Mol Life Sci 62:227–238

    Article  PubMed  CAS  Google Scholar 

  18. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F (2008) Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38:253–269

    Article  PubMed  CAS  Google Scholar 

  19. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    Article  PubMed  CAS  Google Scholar 

  20. Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann NY Acad Sci 1010:186–194

    Article  PubMed  CAS  Google Scholar 

  21. Frisch SM (2008) Caspase-8: fly or die. Cancer Res 68:4491–4493

    Article  PubMed  CAS  Google Scholar 

  22. Maelfait J, Beyaert R (2008) Non-apoptotic functions of caspase-8. Biochem Pharmacol 76:1365–1373

    Article  PubMed  CAS  Google Scholar 

  23. Oka T, Nakajima T, Tamada Y, Shearer TR, Azuma M (2007) Contribution of calpains to photoreceptor cell death in N-methyl-N-nitrosourea-treated rats. Exp Neurol 204:39–48

    Article  PubMed  CAS  Google Scholar 

  24. Fan T-J, Han L-H, Cong R-S, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37:719–727

    Article  PubMed  CAS  Google Scholar 

  25. Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105

    Article  PubMed  CAS  Google Scholar 

  26. Yu HB, Finlay BB (2008) The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe 4:198–208

    Article  PubMed  CAS  Google Scholar 

  27. Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A (2009) The enigma of caspase-2: the laymen's view. Cell Death Differ 16(2):195–207

    Article  Google Scholar 

  28. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases — an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27

    Article  PubMed  Google Scholar 

  29. Czogalla A, Sikorski AF (2005) Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924

    Article  PubMed  CAS  Google Scholar 

  30. Kuribayashi K, Mayes PA, El-Deiry WS (2006) What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther 5:763–765

    Article  PubMed  CAS  Google Scholar 

  31. Conus S, Simon HU (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Monika Kilchenmann for her excellent technical assistance and Richard L. Benton for critically reading the manuscript. This work was partly supported by grants from the Fritz Tobler-Foundation (RZ) and the Berne University Research Foundation (VE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Enzmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulliger, R., Lecaudé, S., Eigeldinger-Berthou, S. et al. Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina. Graefes Arch Clin Exp Ophthalmol 249, 859–869 (2011). https://doi.org/10.1007/s00417-010-1584-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1584-6

Keywords

Navigation