Skip to main content

Advertisement

Log in

Postural changes in intraocular pressure are associated with asymmetrical retinal nerve fiber thinning in treated patients with primary open-angle glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To determine if asymmetrical postural change-induced elevations in intraocular pressure (IOP) in eyes of patients with primary open-angle glaucoma (POAG) were associated with asymmetries in functional and structural damage.

Methods

Enrolled were 132 eyes of 66 patients with POAG (male/female = 22/44, age = 55.2 ± 13.4 years). IOP was first measured in a seated position and then in a supine position at 10-minute intervals over a 60-minute period using a TonoPen XL. The Humphrey visual field 30-2 program and a fast retinal nerve fiber layer (RNFL) thickness acquisition protocol of Stratus optical coherence tomography (OCT) were performed. Mean deviation (MD) and average total RNFL thickness were compared between eyes with the greater magnitude of postural change-induced IOP elevation (ΔIOP) and those with the smaller magnitude of ΔIOP.

Results

The MDs of the eyes with larger ΔIOP (6.21 ± 3.18 mmHg) and smaller ΔIOP (3.02 ± 0.37 mmHg) were −12.31 ± 7.63 dB and −9.67 ± 6.80 dB respectively (p = 0.0176). The average total RNFL thickness was 64.33 ± 17.83 μm in the former and 68.56 ± 15.10 μm in the latter (p = 0.049). The MDs and RNFL thickness were not significantly different between the eyes that had higher and lower IOP values measured in the seated position.

Conclusions

In patients with asymmetrical POAG, the magnitude of IOP elevation induced by postural changes may be related to differences in the severity of both functional and structural damage between the eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720

    Article  PubMed  Google Scholar 

  2. Caprioli J, Coleman AL (2008) Intraocular pressure fluctuation. A risk factor for visual field progression at low intraocular pressures in the Advanced Glaucoma Intervention Study. Ophthalmology 115:1123–1129

    Article  PubMed  Google Scholar 

  3. Anderson DR, Grant MW (1973) The influence of position on intraocular pressure. Invest Ophthalmol 12:204–212

    PubMed  CAS  Google Scholar 

  4. Krieglstein GK, Langham ME (1975) Influence of body position on the intraocular pressure of normal and glaucomatous eyes. Ophthalmologica 171:132–145

    Article  PubMed  CAS  Google Scholar 

  5. Leonard TJK, Kerr Muir MG, Kirkby GR, Hitchings RA (1983) Ocular hypertension and posture. Br J Ophthalmol 67:362–366

    Article  PubMed  CAS  Google Scholar 

  6. Tsukahara S, Sasaki T (1984) Postural change of IOP in normal persons and in patients with primary wide open-angle glaucoma and low-tension glaucoma. Br J Ophthalmol 68:389–392

    Article  PubMed  CAS  Google Scholar 

  7. Smith TJ, Lewis J (1985) Effect of inverted body position intraocular pressure. Am J Ophthalmol 99:617–618

    PubMed  CAS  Google Scholar 

  8. Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103:523–526

    PubMed  CAS  Google Scholar 

  9. Carlson KH, McLaren JW, Topper JE, Brubaker RF (1987) Effect of body position on intraocular pressure and aqueous flow. Investig Ophthalmol Vis Sci 28:1346–1352

    CAS  Google Scholar 

  10. Yamabayashi S, Aguilar RN, Hosoda M, Tsukahara S (1991) Postural change of intraocular and blood pressures in ocular hypertension and low tension glaucoma. Br J Ophthalmol 75:652–655

    Article  PubMed  CAS  Google Scholar 

  11. Chiquet C, Custaud M-A, Le Tran AP, Millet C, Gharib C, Denis P (2003) Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma 12:204–208

    Article  PubMed  Google Scholar 

  12. Lietz A, Kaiser HJ, Stumpfig D, Flammer J (1995) Influence of posture on the visual field in glaucoma patients and controls. Ophthalmologica 209:129–131

    Article  PubMed  CAS  Google Scholar 

  13. Hirooka K, Shiraga F (2003) Relationship between postural change of the intraocular pressure and visual field loss in primary open-angle glaucoma. J Glaucoma 12:379–382

    Article  PubMed  Google Scholar 

  14. Kiuchi T, Motoyama Y, Oshika T (2006) Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal-tension glaucoma. Ophthalmology 113:2150–2155

    Article  PubMed  Google Scholar 

  15. Kiuchi T, Motoyama Y, Oshika T (2010) Postural response of intraocular pressure and visual field damage in patients with untreated normal-tension glaucoma. J Glaucoma 19:191–193

    Article  PubMed  Google Scholar 

  16. Kiuchi T, Motoyama Y, Oshika T (2007) Influence of ocular hypotensive eyedrops on intraocular pressure fluctuation with postural change in eyes with normal-tension glaucoma. Am J Ophthalmol 143:693–695

    Article  PubMed  Google Scholar 

  17. Wollstein G, Schuman JS, Price LL, Aydin A, Strak PC, Hertzmark E, Lai E, Ishikawa H, Mattox C, Fujimoto JG, Paunescu LA (2005) Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 123:464–470

    Article  PubMed  Google Scholar 

  18. Naka M, Kanamori A, Tatsumi Y, Fujioka M, Nagai-Kusuhara A, Nakamura M, Negi A (2009) Comparison of mean deviation with AGIS and CIGTS scores in association with structural parameters in glaucomatous eyes. J Glaucoma 18:379–384

    Article  PubMed  Google Scholar 

  19. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed  Google Scholar 

  20. Harwerth RS, Quigley HA (2006) Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 124:853–859

    Article  PubMed  Google Scholar 

  21. Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126:1500–1506

    Article  PubMed  Google Scholar 

  22. Kanamori A, Nakamura M, Nakanishi Y, Yamada Y, Negi A (2005) Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp Eye Res 81:48–56

    Article  PubMed  CAS  Google Scholar 

  23. Wilson MR, Baker RS, Mohammadi P, Wheeler NC, Lee DA, Scott C (1993) Reproducibility of postural changes in intraocular pressure with the Tono-pen and Pulsair tonometers. Am J Ophthalmol 116:479–483

    PubMed  CAS  Google Scholar 

  24. Wilke K (1972) Effect of repeated tonometry: genuine and sham measurements. Acta Ophthalmol 50:574–582

    CAS  Google Scholar 

  25. Gumus K, Bozkurt B, Sonmez B, Irkec M, Orhan M, Saracbasi O (2006) Diurnal variation of intraocular pressure and its correlation with retinal nerve fiber analysis in Turkish patients with exfoliation syndrome. Graefes Arch Clin Exp Ophthalmol 244:170–176

    Article  PubMed  Google Scholar 

  26. Singleton CD, Robertson D, Byrne DW, Joos KM (2003) Effect of posture on blood and intraocular pressures in multiple system atrophy, pure autonomic failure, and baroreflex failure. Circulation 108:2349–2354

    Article  PubMed  CAS  Google Scholar 

  27. Choi J, Kim KH, Jeong J, Cho H, Lee CH, Kook MS (2007) Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Investig Ophthalmol Vis Sci 48:104–111

    Article  Google Scholar 

  28. Galambos P, Vafiadis J, Vilchez SE, Wagenfeld L, Matthiessen ET, Richard G, Klemm M, Zeits O (2006) Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change. Ophthalmology 113:1832–1836

    Article  PubMed  Google Scholar 

  29. Liu JH, Zhang X, Kripke DF, Weinreb RN (2003) Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Investig Ophthalmol Vis Sci 44:1586–1590

    Article  Google Scholar 

  30. Hara T, Hara T, Tsuru T (2006) Increase of peak intraocular pressure during sleep in reproduced diurnal changes by posture. Arch Ophthalmol 124:165–168

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported in part by Grants-in-Aid No. 22390324 (AN, MN) and No. 20592043 (MN, AN) from the Ministry of Education, Culture Sports, Science and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakamura.

Additional information

Financial disclosure

No financial interest with any groups.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizokami, J., Yamada, Y., Negi, A. et al. Postural changes in intraocular pressure are associated with asymmetrical retinal nerve fiber thinning in treated patients with primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 249, 879–885 (2011). https://doi.org/10.1007/s00417-010-1565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1565-9

Keywords

Navigation