Skip to main content
Log in

Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the immune modulatory effect of low-dose systemic treatment with rapamycin (Rapa) alone or in combination with cyclosporin A (CsA) in a high-responder corneal allograft model.

Methods

A total of 80 C57BL/6 mice received corneal grafts from BALB/c donors. Recipients were treated with either CsA 3 mg/kg/day or Rapa 0.5 mg/kg/day monotherapy or received combined treatment. Immunomodulatory treatment was started on the day of surgery, and continued for 14 days. The frequency of CD4+CD25+Foxp3+ T regulatory cells (Treg) in secondary lymphoid organs was measured by flow cytometry. Development of IFN-γ producing alloreactive T cells was estimated by Elispot. In addition, corneal samples were subjected to real-time RT-PCR analysis for cytokine transcription.

Results

Monotherapy with Rapa significantly delayed allograft rejection (13.4 ± 1.34 days, p = 0.03). However, the combination of both, low-dose Rapa and CsA prolonged corneal allograft survival at a significantly higher level (MST = 17.1 ± 1.37 days, p = 0.0001) than in the control group (MST = 11.2 ± 1.91 days). Rapa monotherapy increased the frequency of CD4+CD25+Foxp3+Treg in draining lymph nodes, whereas addition of CsA reduced Tregs. Monotherapy with Rapa as well as combined treatment prevented development of IFN-γ producing alloreactive T cells in spleen. Combined treatment resulted in down-regulation of intragraft CD3, IL-2, IFN-γ and IL-10 transcription (p = 0.028, p = 0.027, p = 0.028 and p = 0.027 respectively).

Conclusions

Combined treatment with low-dose CsA and Rapa resulted in superior graft survival, and effectively modulated mRNA expression of inflammation and infiltration markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McDonald S, Russ G, Campbell S, Chadban S (2007) Kidney transplant rejection in Australia and New Zealand: Relationships between rejection and graft outcome. Am J Transplant 7:1201–1208

    Article  PubMed  CAS  Google Scholar 

  2. Opelz G (1994) Effect of the maintenance immunosuppressive drug regiment on kidney transplant outcome. Transplantation 58:443–446

    Article  PubMed  CAS  Google Scholar 

  3. Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ (2006) How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation 81:896–901

    Article  PubMed  Google Scholar 

  4. Birnbaum F, Böhringer D, Sokolovska Y, Sundmacher R, Reinhard T (2005) Immunosuppression with cyclosporine A and mycophenolate mofetil after penetrating high-risk keratoplasty: a retrospective study. Transplantation 79:964–968

    Article  PubMed  CAS  Google Scholar 

  5. Hill JC (1994) Systemic cyclosporine in high-risk keratoplasty. Short- versus long-term therapy. Ophthalmology 101:128–133

    PubMed  CAS  Google Scholar 

  6. Bailly N, Dunewa I, Schlattmann P, Rieck PW (2008) Significance of cyclosporin A absorption for effective immunomodulatory therapy after high-risk keratoplasty. Ophthalmologe 105:457–462

    Article  PubMed  CAS  Google Scholar 

  7. Poon AC, Forbes JE, Dart JK, Subramaniam S, Bunce C, Madison P, Ficker LA, Tuft SJ, Gartry DS, Buckley RJ (2001) Systemic cyclosporin A in high-risk penetrating keratoplasties: a case-control study. Br J Ophthalmol 85:1464–1469

    Article  PubMed  CAS  Google Scholar 

  8. Inoue KC, Amano S, Sato T, Fujita N, Kagaya F, Kaji Y, Tsuru T, Araie M (2001) Long-term outcome of systemic cyclosporine treatment following penetrating keratoplasty. Jpn J Ophthalmol 45:378–382

    Article  PubMed  CAS  Google Scholar 

  9. Rumelt S, Bersudsky V, Blum-Hareuveni T, Rehany U (2002) Systemic cyclosporin A in high failure risk, repeated corneal transplantation. Br J Ophthalmol 86:988–992

    Article  PubMed  CAS  Google Scholar 

  10. Stepkowski SM, Tian L, Napoli KL, Ghobrial R, Wang ME, Chou TC, Kahan BD (1997) Synergistic mechanisms by which sirolimus and cyclosporin inhibit rat heart and kidney allograft rejection. Clin Exp Immunol 108:63–68

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Wu J, Luo H, Daloze P (1992) Synergistic effect of rapamycin and cyclosporine in pancreaticoduodenal transplantation in the rat. Transplant Proc 3:892–893

    Google Scholar 

  12. Thompson P, Xu D, Brunette I, Chen H (1998) Combined effect of rapamycin and cyclosporine in prevention of rat corneal allograft rejection. Transplant Proc 30:1033–1035

    Article  PubMed  CAS  Google Scholar 

  13. Birnbaum F, Reis A, Böhringer D, Sokolowska Y, Mayer K, Voiculescu A, Oellerich M, Sundmacher R, Reinhard T (2006) An open prospective pilot study on the use of rapamycin after penetrating high-risk keratoplasty. Transplantation 81:767–772

    Article  PubMed  CAS  Google Scholar 

  14. Sehgal SN (2003) Sirolimus: its discovery, biological properties and mechanism of action. Transplant Proc 35:7–14

    Article  CAS  Google Scholar 

  15. Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14:483–510

    Article  PubMed  CAS  Google Scholar 

  16. Furtado GC, Curotto de Lafaille AM, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signalling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857

    Article  PubMed  CAS  Google Scholar 

  17. Battaglia M, Stabilini A, Roncarolo MG (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105:4743–4748

    Article  PubMed  CAS  Google Scholar 

  18. Coenen JJ, Koenen HJ, van Rijssen E, Kasran A, Boon L, Hilbrands LB, Joosten I (2007) Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant 39:537–545

    Article  PubMed  CAS  Google Scholar 

  19. Tian L, Lu L, Yuan Z, Lamb JR, Tam PK (2004) Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation 77:183–189

    Article  PubMed  CAS  Google Scholar 

  20. Zhang EP, Schründer S, Hoffmann F (1996) Orthotopic corneal transplantation in the mouse-a new surgical technique with minimal endothelial cell loss. Graefes Arch Clin Exp Ophthalmol 234:714–719

    Article  PubMed  CAS  Google Scholar 

  21. Niederkorn JY, Stevens C, Mellon J, Mayhew E (2006) CD4+ T-cell–independent rejection of corneal allografts. Transplantation 81:1171–1178

    Article  PubMed  Google Scholar 

  22. Coster DJ, Williams KA (2005) The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol 140:1112–1122

    Article  PubMed  Google Scholar 

  23. Price FW, Whitson WE, Marks RG (1991) Graft survival in four common groups of patients undergoing penetrating keratoplasty. Ophthalmology 98:322–328

    PubMed  Google Scholar 

  24. Williams KA, Roder D, Esterman A, Muehlberg SM, Coster DJ (1992) Factors predictive of corneal graft survival. Ophthalmology 99:403–414

    PubMed  CAS  Google Scholar 

  25. Scherer MN, Banas B, Mantouvalou K, Schnitzbauer A, Obed A, Krämer BK, Schlitt HJ (2007) Current concepts and perspectives of immunosuppression in organ transplantation. Langenbecks Arch Surg 392:511–523

    Article  PubMed  Google Scholar 

  26. Zhang EP, Schulte F, Bulfone-Paus S, Hoffmann F (2000) The effect of corticosteroid and cyclosporin A on murine corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol 238:525–530

    Article  PubMed  CAS  Google Scholar 

  27. Reis A, Megahed M, Reinhard T, Braunstein C, Godehardt E, Sundmacher R (2001) RAD, a new immunosuppressive macrolide in murine corneal transplantation. Graefes Arch Clin Exp Ophthalmol 239:689–692

    Article  PubMed  CAS  Google Scholar 

  28. Claerhout I, Beele H, Verstraete A, Van den Broecke C, Kestelyn P (2001) The effect of duration and timing of systemic cyclosporine therapy on corneal allograft survival in a rat model. Graefes Arch Clin Exp Ophthalmol 239:152–157

    Article  PubMed  CAS  Google Scholar 

  29. Brook NR, Waller JR, Bicknell GR, Nicholson ML (2005) Cyclosporine and rapamycin act in a synergistic and dose-dependent manner in a model of immunosuppressant-induced kidney damage. Transplant Proc 37:837–838

    Article  PubMed  CAS  Google Scholar 

  30. Beauregard C, Stevens C, Mayhew E, Niederkorn JY (2005) Cutting edge: Atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. J Immunol 174:6577–6581

    PubMed  CAS  Google Scholar 

  31. Niederkorn JY (2007) Immune mechanisms of corneal allograft rejection. Curr Eye Res 32:1005–1016

    Article  PubMed  CAS  Google Scholar 

  32. Hargrave S, Chu Y, Mendelblatt D, Mayhew E, Niederkorn J (2003) Preliminary findings in corneal allograft rejection in patients with keratoconus. Am J Ophthalmol 135:452–460

    Article  PubMed  Google Scholar 

  33. Hargrave SL, Hay C, Mellon J, Mayhew E, Niederkorn JY (2004) Fate of MHC-matched corneal allografts in Th1-deficient hosts. Invest Ophthalmol Vis Sci 45:1188–1193

    Article  PubMed  Google Scholar 

  34. Chong EM, Dana MR (2008) Graft failure IV. Immunologic mechanisms of corneal transplant rejection. Int Ophthalmol 28:209–222

    Article  PubMed  Google Scholar 

  35. Niederkorn JY, Stevens C, Mellon J, Mayhew E (2006) Differential roles of CD8+ and CD8- T lymphocytes in corneal allograft rejection in ‘high-risk’ hosts. Am J Transplant 6:705–713

    Article  PubMed  CAS  Google Scholar 

  36. Sonoda Y, Sano Y, Ksander B, Streilein JW (1995) Characterization of cell-mediated immune responses elicited by orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci 36:427–434

    PubMed  CAS  Google Scholar 

  37. Gong N, Pleyer U, Yang J, Vogt K, Hill M, Anegon I, Volk HD, Ritter T (2006) Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med 8:459–467

    Article  PubMed  CAS  Google Scholar 

  38. Pleyer U, Bertelmann E, Rieck P, Hartmann C, Volk HD, Ritter T (2000) Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4. Graefes Arch Clin Exp Ophthalmol 238:531–536

    Article  PubMed  CAS  Google Scholar 

  39. Qu Y, Zhang B, Zhao L, Liu G, Ma H, Rao E, Zeng C, Zhao Y (2007) The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl Immunol 17:153–161

    Article  PubMed  CAS  Google Scholar 

  40. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y (2006) A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation 82:1484–1492

    Article  PubMed  CAS  Google Scholar 

  41. Kawai M, Kitake H, Mathieu C, Waer M, Pirenne J (2005) Inhibitory and stimulatory effects of cyclosporin A on the development of regulatory T cells in vivo. Transplantation 79:1073–1077

    Article  PubMed  CAS  Google Scholar 

  42. Wang S, Jiang J, Guan Q, Lan Z, Wang H, Nguan CY, Jevnikar AM, Du C (2008) Reduction of Foxp3-expressing regulatory T cell infiltrates during the progression of renal allograft rejection in a mouse model. Transpl Immunol 19:93–102

    Article  PubMed  CAS  Google Scholar 

  43. Haanstra KG, Wubben JA, Korevaar SS, Kondova I, Baan CC, Jonker M (2007) Expression patterns of regulatory T-cell markers in accepted and rejected nonhuman primate kidney allografts. Am J Transplant 7:2236–2246

    Article  PubMed  CAS  Google Scholar 

  44. Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195:1641–1646

    Article  PubMed  CAS  Google Scholar 

  45. Chauhan SK, Saban DR, Lee HK, Dana R (2009) Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol 182:148–153

    PubMed  CAS  Google Scholar 

  46. Bunnag S, Allanach K, Jhangri GS, Sis B, Einecke G, Mengel M, Mueller TF, Halloran PF (2008) FOXP3 expression in human kidney transplant biopsies is associated with rejection and time post transplant but not with favorable outcomes. Am J Transplant 8:1423–1433

    Article  PubMed  CAS  Google Scholar 

  47. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, Morris PJ, Powrie F, Wood KJ (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796

    PubMed  CAS  Google Scholar 

  48. Ochando JC, Yopp AC, Yang Y, Garin A, Li Y, Boros P, Llodra J, Ding Y, Lira SA, Krieger NR, Bromberg JS (2005) Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J Immunol 174:6993–7005

    PubMed  CAS  Google Scholar 

  49. Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204:735–745

    Article  PubMed  CAS  Google Scholar 

  50. Niederkorn JY, Mellon J (1996) Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci 37(13):2700–2707

    PubMed  CAS  Google Scholar 

  51. Niederkorn JY (1999) The immune privilege of corneal allografts. Transplantation 67:1503–1508

    Article  PubMed  CAS  Google Scholar 

  52. Streilein JW (1996) Ocular immune privilege and the Faustian dilemma. The Proctor lecture. Invest Ophthalmol Vis Sci 37:1940–1950

    PubMed  CAS  Google Scholar 

  53. Streilein JW, Niederkorn JY (1981) Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med 153:1058–1067

    Article  PubMed  CAS  Google Scholar 

  54. Plsková J, Duncan L, Holán V, Filipec M, Kraal G, Forrester JV (2002) The immune response to corneal allograft requires a site-specific draining lymph node. Transplantation 73:210–215

    Article  PubMed  Google Scholar 

  55. Yamagami S, Dana MR (2001) The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci 42:1293–1298

    PubMed  CAS  Google Scholar 

  56. Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB (2003) The balance of deletion and regulation in allograft tolerance. Immunol Rev 196:75–84

    Article  PubMed  CAS  Google Scholar 

  57. Sánchez-Fueyo A, Weber M, Domenig C, Strom TB, Zheng XX (2002) Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol 168:2274–2281

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Pleyer.

Additional information

This work was supported by Deutsche Forschungsgemeinschaft (Pl 150/14-2) and Sonderforschungsbereich (SFB650 TP14).

Birgit Sawitzki and Uwe Pleyer made an equal contribution

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanojlovic, S., Schlickeiser, S., Appelt, C. et al. Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival. Graefes Arch Clin Exp Ophthalmol 248, 1447–1456 (2010). https://doi.org/10.1007/s00417-010-1420-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1420-z

Keywords

Navigation